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Abstract

A decision-making process often involves selecting the best solution from a finite set of possi-

ble alternatives regarding some performance measure, which is known as ranking-and-selection

(R&S) when the performance is not explicitly available and can only be estimated by taking

samples. Many R&S procedures have been proposed considering different problem formulations.

In this paper, we adopt the classical fully sequential indifference-zone (IZ) formulation developed

in the statistical literature, and take advantage of the control variates, a well-known variance

reduction technique in the simulation literature, to investigate the potential benefits as well as

the statistical guarantee by designing a new type of R&S procedure in an adaptive fashion. In

particular, we propose a generic adaptive fully sequential procedure that can employ both linear

and nonlinear control variates, in which both the control coefficient and sample variance can

be sequentially updated as the sampling process progresses. We demonstrate that the proposed

procedures provide the desired probability of correct selection in the asymptotic regime as the

IZ parameter goes to zero. We then compare the proposed procedures with various existing

∗Corresponding author.
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procedures through extensive numerical experiments and two illustrative examples, in which we

observe several interesting findings and demonstrate the advantage of our proposed procedures.

Keywords: ranking and selection; adaptive control variates; sample average approximation;

stochastic approximation; variance reduction techniques; simulation

1 Introduction

Selecting the best solution with either the largest or smallest mean performance from a finite

population is known as ranking-and-selection (R&S) in the statistics and simulation literature,

which can be traced back at least to two original papers, i.e., the indifference-zone (IZ) formulation

of Bechhofer (1954) and the subset selection formulation of Gupta (1956) in the middle 1950s.

Since then, many R&S procedures have been designed to solve different types of R&S problems

with different problem formulations.

In the statistics literature, many research works are built on the spirit of statistical hypothesis

testing by choosing a proper alternative hypothesis (cf., Kim and Nelson (2006b) and Bechhofer

et al. (1995)). For instance, the subset selection procedure in Gupta (1956, 1965) could be viewed as

setting the alternative hypothesis as the selected subset containing the true best system, while the

one-stage IZ selection procedure in Bechhofer (1954) could be considered as setting the alternative

hypothesis as the selected best system is at least δ greater than the second best in terms of the

mean, where δ is known as the IZ parameter. Then, the probability of correct decision is closely

related to the power calculation of the hypothesis testing, which often can be converted to the

calculation of the quantile for normal distribution or the first-passing time for Brownian motion

process under the normality assumption. Since the IZ formulation implies a unique best solution,

then most R&S procedures, e.g., two-stage selection procedures in Rinott (1978); Nelson et al.

(2001) and fully sequential selection procedures in Paulson (1964); Hartmann (1991), are designed

under the IZ formulation, in order to provide the targeted statistical guarantee of probability of

correct selection (PCS).

In the simulation literature, the development of R&S procedures has been expanded in many

ways, considering not only the effectiveness of delivering a valid statistical guarantee, but also

the efficiency of using a small number of total samples, which results in two types of approaches

in general, i.e., the frequentist approach followed from the existing statistics literature and the

Bayesian approach developed from the optimization/dynamic programming literature.

In the frequentist approach, many simulation techniques have been taken into consideration,

e.g., common random numbers (CRNs) in fully sequential selection procedure of Kim and Nelson

(2001) and other variance reduction techniques (VRTs) in both multi-stage and fully sequential
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selection procedures of Tsai and Kuo (2012) and Tsai et al. (2017). Meanwhile, new theoret-

ical building blocks have been established to improve the algorithm efficiency (e.g., constructing

variance-dependent Brownian motion process in Hong (2006)), and to solve new types of R&S prob-

lems (e.g., conducting asymptotic analysis for steady-state simulation in Kim and Nelson (2006a)),

as well as to remove the widely used IZ assumption (e.g., proposing Law of the Iterated Logarithm

based continuation boundaries in Fan et al. (2016)). With the fast development of computer tech-

nology, parallel computing environments have also been adopted to solve large-scale R&S problems,

e.g., the asymptotic parallel selection procedure in Luo et al. (2015) and the good selection proce-

dure in Ni et al. (2017) and Zhong et al. (2022). On the other hand, under the Bayesian approach,

instead of delivering a guarantee of correct selection of the best system, Bayesian-type procedures

often consider the efficiency as the primary goal to design various (nearly) optimal sample allocation

rules under different objective functions, typically by maximizing the posterior PCS or maximizing

the value of information, for example, the optimal computing budget allocation (OCBA) family

procedures in Chen et al. (2000); Lee et al. (2012); Gao et al. (2017), the value of information

procedures in Chick and Inoue (2001); Chick et al. (2010); Qu et al. (2015), and the approximate

dynamic control policies in Frazier et al. (2008); Ryzhov (2016); Peng et al. (2018). Notice that the

optimality of the sampling efficiency is usually derived in the asymptotic sense as the total number

of samples goes to infinity.

In this paper, we focus on employing the VRTs in the frequentist approach, especially consid-

ering both the linear and nonlinear control variates (CVs) methods in the design of fully sequential

selection procedures. The CV technique is one of the most effective and widely applied VRTs in the

simulation literature. The idea of CV is to take advantage of the correlation between the outputs

and some selected concomitant random variables (i.e., controls). The existing research on this topic

can be divided into two main categories: standard linear CV and nonlinear CV. When applying

linear CV estimation, the controls are often chosen among the set of input random variables in the

simulated system (with user-specified probability distribution functions). For instance, it is natural

to use either the interarrival time or service time as controls to estimate the expected waiting time

because of the desired correlations in a queueing system (Law, 2007). It is worthwhile pointing

out that the linear CV estimation is easily implemented and computed, basically based on a lin-

ear regression technique, however an inappropriate choice of controls may degrade its statistical

efficiency. Interested readers may refer to Bauer and Wilson (1992) for a detailed discussion of

selecting effective linear controls.

Much research effort for developing a more general CV estimation is needed because many

problems naturally admit a nonlinear CV parameterization. The relevant application problems

include the computational finance problems (e.g., pricing financial derivatives in Jourdain (2009)
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and Staum (2009)), and the problems that involve the simulation of a Markov process (e.g., mul-

ticlass queueing networks in Henderson et al. (2003) and Markov chain Monte Carlo examples in

Dellaportas and Kontoyiannis (2012)). It requires a comprehensive understanding of the structure

of the simulated system to construct nonlinear CV using “approximating martingales”, which is

initiated by Henderson (1997) that uses an approximating process to define a zero-mean martingale

for the original process. It should be noticed that the martingale-type nonlinear CV parameteriza-

tion needs to be identified from scratch for each specific problem, and the computation of nonlinear

CV estimation is not so straightforward as in the linear case. Kim and Henderson (2007) intro-

duce two types of nonlinear CV estimators, which are respectively based on the sample average

approximation (SAA) and stochastic approximation (SA) approaches.

The potential benefit of employing linear CV estimation in R&S procedures has been demon-

strated in some works in the literature. For instance, Nelson and Staum (2006) propose a two-stage

selection procedure while Tsai and Nelson (2010) design fully sequential selection procedures that

are effectively combined with the linear CV estimators. Integrated use of linear CV and other

VRTs, such as correlation induction, conditional expectation and poststratified sampling, have

also been applied into fully sequential selection procedures in Tsai and Kuo (2012) and Tsai et al.

(2017). It is worthwhile noticing that all fully sequential selection procedures in the aforementioned

VRT-related works employ the linear CV model from which the controlled sum (CS) estimator is

derived (cf., Tsai and Nelson (2010)). However, how to incorporate the nonlinear CV estimation

into R&S procedure designing, especially into the fully sequential framework, is one interesting

problem that has not yet been investigated in the literature, and thus we would like to address in

this paper.

Back to the problem of implementing the linear CV in R&S procedure designing, one critical

issue is the choice of the control coefficient β̂, which is typically set as the optimal value to minimize

the variance of the CV estimator. Recall that the CS estimator initially proposed in Tsai and Nelson

(2010), which is a variation of ordinary linear CV estimators, has the following two features: (i) it

requires a preliminary stage to calculate the control coefficient estimator β̂ based on the linear CV

model, and (ii) the value of β̂ is then fixed when forming the CS estimator used in the subsequent

elimination stages. These two requirements are recommended to maintain the finite-time statistical

validity of such procedures under normality assumptions. Tsai et al. (2017) show that the normality

assumptions might be violated when implementing the linear CV with some other VRTs, and then

design fully sequential selection procedures with an asymptotic statistical guarantee. The properties

of nonlinear CV estimators, from either SAA or SA approaches, are often derived in the asymptotic

sense, which motivates us to investigate the asymptotic statistical validity as employing nonlinear

CV in R&S procedures.
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As mentioned above, the value of β̂ in the CS estimator of Tsai and Nelson (2010) will not be

updated even though more and more observations are sequentially collected in the fully sequential

selection procedures. In fact, both the CS estimator of Tsai and Nelson (2010) and the SAA

estimator of Kim and Henderson (2007) can be viewed as a non-adaptive version because they use

independent sets of observations to compute the coefficient β̂ and the desired CS estimator of Tsai

and Nelson (2010) or the SAA estimator of Kim and Henderson (2007) (see Lapeyre and Lelong

(2011) for the definitions of adaptive and non-adaptive estimators). Then, whether it is possible to

design an adaptive method that can update the value of β̂ in the fully sequential R&S procedures

is another interesting problem.

In this paper, we first propose an adaptive fully sequential R&S framework that can tune the

linear estimation of control coefficient to improve efficiency as the sampling process progresses. In

addition, we aim to adopt the nonlinearly parameterized CV estimation, instead of simply linear

CV estimation, in designing adaptive fully sequential selection procedures, which makes it more

generally applicable. Since both standard linear CV and martingale-type nonlinear CV have been

well studied in the simulation literature, it seems well worthwhile to develop a general and adaptive

R&S framework for reaping their benefits.

The rest of the paper is organized as follows. In Section 2, we review the main ideas of linear and

nonlinear control variates, and introduce the corresponding notation that will be used throughout

the article. In Section 3, we present adaptive fully sequential selection procedures when linear or

nonlinear control variates are applied, and discuss the statistical validity and efficiency of these

procedures in an asymptotic regime. Numerical results and two practical illustration examples

are provided in Sections 4 and 5, respectively. The paper ends with some concluding remarks in

Section 6. The proofs and the details of the benchmark procedures are contained in the Appendix.

2 Preliminaries

Suppose that there are k independent simulation systems with unknown mean performance mea-

sure θi for each system design i = 1, 2, . . . , k. Let Yij denote the simulation output from the jth

replication of system i. The ordinary sample-mean-based R&S procedures assume that

Yij = θi + ηij ,

where ηij is independently and identically distributed (i.i.d.) normal random variable N(0, σ2
i ) with

unknown σ2
i for all i and j. The standard estimator of θi across n simulation replications is the

5



sample mean estimator

Ȳi(n) =
1

n

n∑
j=1

Yij ,

which is unbiased and has variance σ2
i /n.

2.1 Linear Control Variates

We first review the linear CV estimator. Let Cij represent the function of simulation inputs from

the jth replication of system i. The qi × 1 vector Cij is called the control and is assumed to

have a known mean vector µi. Let Ci(n) denote the n × qi matrix whose jth row is CT
ij . Let

Yi(n) = (Yi1, . . . , Yin)T. We consider the following linear CV estimator of θi:

θ̂CV(i, n) = Ȳi(n)−
(
C̄i(n)− µi

)T
β̂i(n), (1)

where Ȳi(n) = 1
n

∑n
j=1 Yij and C̄i(n) = 1

n

∑n
j=1 Cij are the sample means of the outputs and

controls, respectively, and

β̂i(n) = S−1
Ci

(n)SCiYi(n), (2)

where SCi(n) = (n−1)−1
(
Ci(n)TCi(n)− nC̄i(n)C̄i(n)T

)
is the sample variance-covariance matrix

of Cij , and SCiYi(n) = (n − 1)−1
(
Ci(n)TYi(n)− nC̄i(n)Ȳi(n)

)
is the sample covariance vector

between Cij and Yij . See Remark 1 for finite-sample properties of θ̂CV(i, n) under the normality

assumption of (Yij ,Cij).

Without the normality assumption, Nelson (1990) derives some nice properties of the CV esti-

mator in the asymptotic sense, which are the weak law of large numbers (WLLN) and central limit

theorem (CLT) for θ̂CV(i, n) (cf., Theorem 3 in Nelson (1990)). That is, as n→∞, θ̂CV(i, n)
p→ θi

and
√
n
(
θ̂CV(i, n)−θi

)
⇒ N(0, ξ2

i ), where
p→ denotes convergence in probability and⇒ denotes con-

vergence in distribution, and ξ2
i = (1−R2

i )σ
2
i with R2

i = Cov [Yij ,Cij ] Var [Cij ]
−1 Cov [Cij , Yij ] /σ

2
i

is the square of the multiple correlation coefficient between Yij and Cij . The asymptotic results

allow us to derive the PCS guarantee as incorporating the adaptively updated CV estimators into

designing the fully sequential R&S procedures.

The standard linear CV estimator is statistically more efficient than the ordinary sample mean

estimator (as long as R2
i > qi/(n − 2)), and has been successfully adopted in designing R&S

procedures. For instance, Tsai and Nelson (2010) propose a variation of standard linear CV es-

timators, called CS estimators, that can be appropriately incorporated into fully sequential pro-

cedures. It requires to collect a preliminary-stage sample {(Yij ,Cij), j = 1, 2, . . . ,m0} to com-

pute β̂i(m0) for each system i = 1, 2, . . . , k (based on Equation (2)), and a first-stage sample

{(Yij ,Cij), j = m0 + 1,m0 + 2, . . . ,m0 +n0} to compute the the controlled sample mean Ȳi[m0, n0]
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and the controlled sample variance S2
i [m0, n0] as follows,

Ȳi [m0, n0] =
1

n0

m0+n0∑
j=m0+1

[
Yij − (Cij − µi)

T β̂i(m0)
]
,

S2
i [m0, n0] =

1

n0 − 1

m0+n0∑
j=m0+1

[
Yij − (Cij − µi)

T β̂i(m0)− Ȳi[m0, n0]
]2
.

Under the normality assumption described in Remark 1, it can be shown that E
[
Ȳi[m0, n0]

]
= θi

and Var
[
Ȳi[m0, n0]

]
=
(

m0−2
m0−qi−2

)
ξ2
i
n0

. Then, the values of control coefficient β̂i and variance

estimator S2
i are both fixed in subsequent stages of the elimination process. The disadvantages

of using CS estimators include: (i) the preliminary-stage observations are wasted because they

are collected before the elimination process is initiated; and (ii) the loss ratio contains only the

preliminary-stage sample size m0 instead of the overall sample size, which implies that its statistical

efficiency is inferior to that of the standard CV estimators.

Remark 1. In most of the existing literature, e.g., Nelson and Staum (2006) and Tsai and Nelson

(2010), it is often assumed that {(Yij ,Cij), j = 1, 2, . . .} are i.i.d. (qi + 1) × 1 normal random

vectors. Under the assumption of multivariate normality, Yij can be described as follows:

Yij = θi + (Cij − µi)
Tβ∗i + εij ,

where the multiplier β∗i = Var [Cij ]
−1 Cov [Cij , Yij ], which is unknown and is called the optimal

control coefficient in terms of minimizing the variance of the CV estimator. The residual terms

{εij , j = 1, 2, . . .} are i.i.d. N(0, ξ2
i ) random variables where ξ2

i = (1− R2
i )σ

2
i . Then, we know that

E[θ̂CV(i, n)] = θi and Var[θ̂CV(i, n)] =
(

n−2
n−qi−2

)
ξ2
i
n , where the term

(
n−2

n−qi−2

)
is known as the loss

ratio.

2.2 Nonlinear Control Variates

The nonlinear CV estimator of θi considered in the paper is defined as follows:

θ̂NCV(i, n) = Ȳi(n)− 1

n

n∑
j=1

f(Cij , β̂i), (3)

where Cij is a qi × 1 vector of control, β̂i is a pi × 1 vector of control coefficient estimators, and

f(Cij , β̂i) could be any nonlinear function of Cij and β̂i. Unlike the linear CV estimation in

Equation (1), a nonlinear parameterization could result in different numbers of dimensionality of

the vectors Cij and β̂i. For instance, when f(Cij , β̂i) is represented as β̂i1Cβ̂i2
ij1 + β̂i3Cij2 + β̂i4, then
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the dimensionality of Cij and β̂i is qi = 2 and pi = 4, respectively.

For nonlinear CV estimation, we do not explicitly assume any intrinsic relationship between

Yij and Cij , and do not assume the control mean is known. However, we need to assume that an

appropriate nonlinearly parameterized function f(Cij , β̂i) is available and its expectation equals

to zero for any value of β̂i, in order to make θ̂NCV unbiased. This assumption is often true when

using the martingale-type control variates in simulation (cf., Ashford and Beale (1989); Henderson

and Glynn (2002); Kim and Henderson (2007)). Moreover, we cannot expect to find a closed

form expression for β̂i as in the linear case (i.e., Equation (2)) when the CV parameterization is

nonlinear. Fortunately, Kim and Henderson (2007) show that, under some pathwise differentiability

and moment conditions, the variance of nonlinear CV estimator becomes a differentiable function

with respect to the parameter β̂i, and therefore stochastic optimization approaches can be applied to

search for the optimal value of β̂i. In this paper, we adopt the two types of nonlinear CV estimators,

based on the SAA and SA stochastic optimization approaches derived in Kim and Henderson (2007),

to investigate the possibility and potential issues as combining into fully sequential procedures. We

next briefly introduce the SAA and SA algorithms, i.e., Algorithms 1 and 2, for computing the

nonlinear CV estimators, denoted as θ̂SAA and θ̂SA, respectively.

The SAA-based nonlinear CV estimator is derived by a two-phase approach. In the first phase,

Algorithm 1 estimates β̂i(m) by computing the first-order critical point for the minimization prob-

lem of the sample variance for {Yij − f(Cij ,βi), j = 1, 2, . . . ,m} for each system i.1 In the second

phase, it uses β̂i(m) in place of β̂i and then computes θ̂NCV(i, n) via Equation (3) based on newly

collected n observations {(Yij ,Cij), j = m+ 1, . . . ,m+ n}.

Algorithm 1 (The SAA algorithm for computing θ̂SAA).

First-phase: Choose a positive integer m ≥ 2. Generate the i.i.d. observations {(Yij ,Cij),

j = 1, 2, . . . ,m}. Find β̂i(m), a first-order critical point of the variance minimization problem

min
βi

Var(βi,m), where Var(βi,m) is defined as follows,

Var(βi,m) =
1

m− 1

 m∑
j=1

(
θ̂ij
)2 − 1

m

( m∑
j=1

θ̂ij

)2
 ,

with θ̂ij = Yij − f(Cij ,βi) for any fixed βi.

Second-phase: Generate the i.i.d. observations {(Yij ,Cij), j = m+1,m+2, . . . ,m+n}, indepen-

dent of the first-phase observations. Then, compute θ̂SAA(i, n) = n−1
∑m+n

j=m+1

[
Yij − f(Cij , β̂i(m))

]
as the desired estimator.

1Notice that, unlike the linear case of obtaining an optimal value of β̂i(m), the best we can hope for the nonlinear
case here is to obtain one of the first-order critical points of the minimization problem.
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Remark 2. It is worthwhile pointing out that when f(Cij ,βi) is a linear function, i.e., f(Cij ,βi) =

(Cij − µi)
T βi, the first-order critical point β̂i(m) obtained in Algorithm 1 is indeed the global opti-

mal value, which has the closed-form expression as in Equation (2), i.e., β̂i(m) = S−1
Ci

(m)SCiYi(m).

Different from the two-phase approach of SAA algorithm, the SA-based algorithm works in a

recursive way which is analogous to the steepest-descent gradient search method in deterministic

optimization, except that the gradient is stochastic and needs to be estimated. We introduce

additional notation w to represent the iteration index. At iteration w, the sample mean and the

gradient estimator of the sample variance, with respect to m observations {Y w
ij − f(Cw

ij , β̂
w−1
i ), j =

1, 2, . . . ,m}, are computed conditioned on the β̂w−1
i estimated at iteration (w−1), for each system i.

Suppose that β̂i takes the value in the set B, i.e., β̂i ∈ B ⊂ Rp. Then, the estimate β̂w−1
i is updated

to β̂wi as follows: β̂wi = ΠB(β̂w−1
i −awgw−1(β̂

w−1
i )), where ΠB denotes a projection of points outside

B back into B, aw > 0 is the step size satisfying
∑∞

w=1 aw =∞ and
∑∞

w=1 a
2
w <∞, and gw−1(β̂

w−1
i )

is the gradient estimator from iteration w.

Algorithm 2 (The SA algorithm for computing θ̂SA).

Initialization: Choose β̂0
i , for i = 1, 2, . . . , k, and a sequence of positive real numbers {aw, w =

1, 2, . . . , n}, where n is the total number of iterations.

For-Loop: For w = 1 to n

Generate the i.i.d. observations {(Y w
ij ,C

w
ij), j = 1, 2, . . . ,m}, where m ≥ 2, and compute

Aw
i (β̂w−1

i ) =
1

m

m∑
j=1

[
Y w
ij − f(Cw

ij , β̂
w−1
i )

]
,

gw−1(β̂
w−1
i ) =

−2

m− 1

m∑
j=1

{[
Y w
ij − f(Cw

ij , β̂
w−1
i )−Aw

i (β̂w−1
i )

]
∇

β̂i

[
f(Cw

ij , β̂i)−
1

m

m∑
l=1

f(Cw
il , β̂i)

]∣∣∣∣
β̂i=β̂w−1

i

}
,

β̂wi = ΠB

(
β̂w−1
i − awgw−1(β̂

w−1
i )

)
.

Next w.

After-the-Loop. Then, compute θ̂SA(i, n) = n−1
∑n

w=1 Aw
i (β̂w−1

i ) as the desired estimator.

Kim and Henderson (2007) also show some nice properties regarding the strong law of large

numbers (SLLN) and CLT for θ̂SAA and θ̂SA obtained in Algorithms 1 and 2. To achieve this

goal, Kim and Henderson (2007) require three assumptions regarding the unbiased property and
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differentiability conditions for θ̂SAA and θ̂SA, and two additional assumptions specifically for θ̂SA,

as well as some independence conditions, most of which are also required to prove the limiting

properties for θ̂NCV in Equation (3).2 In particular, Kim and Henderson (2007) demonstrate that,

as n → ∞, θ̂SAA(i, n)
a.s.−→ θi and θ̂SA(i, n)

a.s.−→ θi, where
a.s.−→ denotes convergence with probability

one, and
√
n(θ̂SAA(i, n) − θi) ⇒ v1/2(β̂i(m))N(0, 1) and

√
mn(θ̂SA(i, n) − θi) ⇒ v1/2(β∗i )N(0, 1),

where v(βi) = Var [Yij − f(Cij ,βi)].

3 The Procedures

In this section, we present fully sequential selection procedures that allow either linear or nonlinear

CV estimation and adaptively update the β̂ estimator as the elimination process progresses. We

demonstrate the statistical validity of the proposed procedures in a meaningful asymptotic regime

as the IZ parameter δ goes to zero.

Following the traditional IZ formulation, we assume that θ1−δ ≥ θ2 ≥ . . . ≥ θk, where system 1

with the largest mean performance measure is the true best and the mean difference between the

best and second best is greater than or equal to the IZ parameter δ. Our goal is to design a fully

sequential procedure that can provide the asymptotic PCS level 1− α, that is,

lim inf
δ→0

Pr {select system 1|θ1 − θ2 ≥ δ} ≥ 1− α.

Notice that if the smallest mean performance is desired, then multiply each observation Yij by −1

before implementing the procedure.

3.1 The Generic Adaptive Fully Sequential Procedure with Control Variates

We first present a generic framework from which the adaptive fully sequential procedures with

linear and nonlinear control variates can be derived in Sections 3.2 and 3.3.

The procedure works as follows. We first set the initial control coefficient estimator to an

arbitrary value as desired. We then take first-stage n0 observations to calculate the initial variance

estimators for each system i = 1, 2, . . . , k, and conduct the comparisons for elimination decisions

with the first-stage samples. Then, at each of the following rounds, we take one observation for

each system still in contention in a round-robin order, and perform necessary statistics updating

and elimination comparisons. Continuing doing so, it stops until there is only one system left.

Notice that, after the first stage, the control coefficient estimator β̂ for each system is calculated

2Interested readers may refer to Proposition 3 in Appendix B for a similar result for θ̂SAA obtained in our proposed
procedure.
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��𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑓𝑓(𝑪𝑪𝑖𝑖𝑖𝑖 , �𝜷𝜷𝑖𝑖0 , ��𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑓𝑓(𝑪𝑪𝑖𝑖𝑖𝑖 , �𝜷𝜷𝑖𝑖1 , ��𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑓𝑓(𝑪𝑪𝑖𝑖𝑖𝑖 , �𝜷𝜷𝑖𝑖2 , … … ��𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑓𝑓(𝑪𝑪𝑖𝑖𝑖𝑖 , �𝜷𝜷𝑖𝑖ℓ

�𝜷𝜷𝑖𝑖ℓ

2nd stage 3rd stage (ℓ+1)st stage1st stage

2nd stage 3rd stage ℓth stage1st stage

Figure 1: The sequence for β̂i` updating and θ̂ij calculation.

based on all observations collected up to the updating points, which could be consecutive at the

end of each round or every batch of several rounds.

For notational simplicity, we let L denote the batching size of rounds, that is the number of

observations between two consecutive updating points. Notice that when L = 1, we then update

β̂ at each round when one additional observation is obtained.3 Let r be the sample counter for

observations collected from each system and let ` be the stage counter for β̂ updating points. Then,

` = 0 when r = 0, ` = 1 when 1 ≤ r ≤ n0 and ` = d(r − n0)/Le + 1 when r > n0, where dxe
denotes the smallest integer that is greater than or equal to x. At the end of the `th stage (` ≥ 1),

where the sample counter r = n0 + (` − 1)L, the coefficient estimator β̂ for system i, denoted

by β̂i`, is computed based on all r observations using either the linear or nonlinear CV methods

described in Sections 2.1 and 2.2. For the jth controlled observation of system i, which is in the

following (` + 1)st stage, we define accordingly θ̂ij = Yij − f
(
Cij , β̂i`

)
, where f

(
Cij , β̂i`

)
could

be a linear or nonlinear function of Cij and β̂i`. In other words, this updating scheme allows β̂i`

to be applied only to the observations collected in the (` + 1)st stage (i.e., jth observation where

j = {n0 + (` − 1)L + 1, n0 + (` − 1)L + 2, . . . , n0 + `L}), as shown in Figure 1. In the current

version of procedure, for each system i we choose β̂i0 such that f
(
Cij , β̂i0

)
= 0 for the observations

in the first stage, i.e., j = 1, 2, . . . , n0. In general, the value of β̂i0 could be arbitrary as desired,

for example, setting as the value estimated by prior knowledge or experience. We call the fully

sequential procedure using the previously defined θ̂ij as AFS.

Procedure 1 (The Generic Adaptive Fully Sequential Procedure (AFS)).

Step 0. Setup: Select the PCS level 1− α ∈ (1/k, 1), IZ parameter δ > 0, first-stage sample size

n0 ≥ 2, initial value of β̂i0 such that f
(
Cij , β̂i0

)
= 0 for all i = 1, 2, . . . , k,4 and β̂ updating

frequency L ≥ 1 (or L ≥ 2). Let a = − log [2α/(k − 1)].

3Note that, when using SA-based approach, it requires that L ≥ 2 in order to estimate the gradient at least in
the first iteration.

4For the linear case, we can simply set β̂i0 = 0 for all i = 1, 2, . . . , k. For the nonlinear case, the setting of β̂i0

could be problem-dependent.
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Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. Obtain n0

observations {(Yij ,Cij) , j = 1, 2, . . . , n0} from each system i ∈ I. Set the stage counter ` = 1,

and compute the jth controlled observation of system i as

θ̂ij = Yij − f
(
Cij , β̂i,`−1

)
for all i ∈ I and j = 1, 2, . . . , n0. Set the sample counter r = n0.

Step 2. Updates: Compute the sample mean and sample variance of the first r controlled obser-

vations for all systems i ∈ I as follows,

θ̄i(r) =
1

r

r∑
j=1

θ̂ij , and S2
i (r) =

1

r − 1

[ r∑
j=1

(
θ̂ij
)2 − 1

r

( r∑
j=1

θ̂ij

)2
]
. (4)

Step 3. Elimination: Set Iold = I. Let

I = Iold\
{
i ∈ Iold : θ̄i(r)− θ̄h(r) < min

{
0,−a

δ
·
[
S2
i (r) + S2

h(r)
]

r
+
δ

2

}
, for some h ∈ Iold

and h 6= i

}
,

where A \B = {x : x ∈ A and x /∈ B}.

Step 4. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise,

(i). Updating β̂: If r = n0 + (` − 1)L, then set β̂i` = β̂i(r) for each system i ∈ I, where

β̂i(r) is calculated based on linear or nonlinear CV estimation, and let ` = `+ 1.

(ii). Generating Sample: Let r = r+ 1. Take the rth sample (Yir,Cir) from system i ∈ I,

and obtain the rth controlled observation of system i ∈ I as

θ̂ir = Yir − f
(
Cir, β̂i,`−1

)
,

and go to Step 2.

Notice that in the elimination process in Step 3 of AFS, we estimate the variance of the

observation difference using the marginal variance estimators for each system, which is reasonable

because the CRN technique is not used. In the following subsections, we will incorporate both the

linear and nonlinear β̂ updating methods into Step 4(i) of AFS, and demonstrate their statistical

validity through the asymptotic analysis, which, as a byproduct, allows us to update the sample
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variances sequentially as shown in the procedure. The asymptotic regime used here essentially

assumes that the first-stage sample size n0 = n0(δ) is a function of δ, satisfying n0 → ∞ and

δn0 → 0 as δ → 0. It is also worthwhile pointing out that this asymptotic regime along with

variance updating mechanism has also been used in Luo et al. (2015) and Tsai et al. (2017).

3.2 The Adaptive Fully Sequential Procedure with Linear Control Variates

When using the linear CV estimation in Section 2.1, at the end of `th stage, ` = 1, 2, . . ., we

update β̂i` = β̂i(r) = S−1
Ci

(r)SCiYi(r) according to Equation (2), with r = n0 + (`− 1)L. Then, we

increase the stage counter ` = `+ 1 and obtain θ̂ij = Yij − (Cij − µi)
T β̂i,`−1 as the jth controlled

observation of system i ∈ I in this stage.. It should be noted that, for AFS with linear CV

estimation, the estimator θ̂ij is unbiased because the expectation operator is linear and β̂i,`−1 is

estimated from observations in the previous stages which is independent with Cij at the current

stage. The updating rule is described in detail in Algorithm 3 as follows.

Algorithm 3 (The linear method for updating β̂).

Updating Rule: At stage ` when sample size r = n0 +(`−1)L, we obtain β̂i` = β̂i(r) as follows,

β̂i(r) = S−1
Ci

(r)SCiYi(r),

where SCi(r) is the sample variance-covariance matrix of Cij , and SCiYi(r) is the sample

covariance vector between Cij and Yij , based on observations {(Yij ,Cij), j = 1, 2, . . . , r}.

Remark 3. Since the estimator β̂ has an explicit formula in the case of linear CV, the updates

can be calculated using only prior estimates and new observations, and then the storage of previous

individual observations is unnecessary. For instance, when qi = 1 we have β̂i(r) = SCiYi(r)/S
2
Ci

(r),

where SCiYi(r) is the sample covariance between Cij and Yij, and S2
Ci

(r) is the sample vari-

ance of Cij, based on observations {(Yij , Cij), j = 1, 2, . . . , r}. For the next update of β̂i (i.e.,

when additional observations {(Yij , Cij), j = r + 1, r + 2, . . . , r + L} are available), we first define

Ỹi(r, L) = [
√
r · Ȳi(r) +

√
r + L · Ȳi(r + L)]/[

√
r +
√
r + L] and similarly define C̃i(r, L). We can

then compute β̂i(r + L) = [SCiYi(r) + SCiYi(∗)]/[S2
Ci

(r) + S2
Ci

(∗)], where SCiYi(∗) =
∑r+L

j=r+1[Cij −
C̃i(r, L)][Yij − Ỹi(r, L)] and S2

Ci
(∗) =

∑r+L
j=r+1[Cij − C̃i(r, L)]2. Interested readers may refer to Es-

cobar and Moser (1993) and Klotz (1995) for more detailed discussion on updating formulae for

simple or multiple linear regression without keeping all previous observations.

Since the updated mechanism of β̂ leads to a complex correlation structure of controlled ob-

servations, it appears difficult to show a finite-time statistical validity of the proposed procedures.

More specifically, the controlled observations in the same `th stage remain i.i.d. (as conditioned on
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the same β̂i,`−1), but the observations collected in different stages are not i.i.d. anymore, because

the computation of β̂i` is based on samples in the previous stages. Fortunately, we can show the

asymptotic statistical validity in the regime as the IZ parameter δ → 0. The main result for the

linear CV updating scheme is summarized in Theorem 1.

Theorem 1. Let (Yij ,Cij) be the jth simulation outputs and controls from system i, which is

assumed to be independent for different i and j, where j = 1, 2, . . . and i = 1, 2, . . . , k. Let θi be the

mean performance measure of system i (i.e., θi = E[Yij ]) satisfying the IZ formulation, which is

assumed as θ1 − δ ≥ θ2 ≥ . . . ≥ θk, where δ is the predetermined IZ parameter. Let the first-stage

sample size n0 = n0(δ) be a function of δ, satisfying that n0(δ) ≥ max
i=1,...,k

qi + 3, and that n0 → ∞

and δn0 → 0 as δ → 0. Then, with the coefficient β̂ updating rule in Algorithm 3, the AFS
procedure provides a correct selection (i.e., selecting system 1 as the best) with a probability at least

1− α as δ → 0.

Notice that the result in Theorem 1 still holds if replacing the linear updating rule in Algorithm 3

by the nonlinear SAA updating rule in Algorithm 4, under some mild conditions, which will be

introduced in the following subsection.

3.3 The Adaptive Fully Sequential Procedure with Nonlinear Control Variates

For the nonlinear CV case, we first consider employing the SAA nonlinear CV estimator of Algo-

rithm 1 for β̂ updating scheme in the generic procedure AFS, which is called AFS-SAA and is

described in detail as follows.

In Step 4(i) of AFS-SAA, at the end of `th stage, ` = 1, 2, . . ., the control coefficient estimator

β̂i` = β̂i(r) with r = n0 + (` − 1)L, is computed in the same manner as shown in the first-phase

of Algorithm 1 introduced in Section 2.2. In particular, we use all the outcomes collected up

to the current updating point, i.e., {(Yij ,Cij), j = 1, 2, . . . , r}, and the given nonlinear function

f
(
Cij ,βi

)
to obtain the associated Var(βi, r). By finding the first-order critical point for the SAA

minimization problem min
βi

Var(βi, r), we obtain the optimal value of β̂i(r), which is the desired

value of β̂i`. It is worthwhile pointing out that, as known the exact form of function f
(
Cij ,βi

)
,

we may not necessarily need to record every outcome of {(Yij ,Cij), j = 1, 2, . . . , r}, but to record

some particular statistics in order to compute the terms
∑r

j=1 θ̂ij and
∑r

j=1

(
θ̂ij
)2

in the expression

of Var(βi, r). In the following Algorithm 4, we describe the updating rule used in Step 4(i) of

AFS-SAA in detail.

Algorithm 4 (The SAA nonlinear method for updating β̂).
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Updating Rule: At stage ` with sample size r = n0 + (`− 1)L, we obtain β̂i` = β̂i(r) by finding

a first-order critical point of the SAA optimization problem

min
βi

Var(βi, r) = min
βi

1

r − 1

[ r∑
j=1

(
θ̂ij
)2 − 1

r

( r∑
j=1

θ̂ij

)2
]

where θ̂ij = Yij − f(Cij ,βi) for any fixed βi, based on all observations
{

(Yij ,Cij), j =

1, 2, . . . , r
}

.

The SAA-based CV estimator θ̂SAA used in Kim and Henderson (2007) implements only two

phases of sampling, and the independence between these two phases is required to achieve the SLLN

and CLT. In other words, as shown in Algorithm 1, the m observations used in constructing β̂i(m)

are independent of those n observations used in computing θ̂SAA(i, n). By contrast, our proposed

adaptive fully sequential procedure involves multiple stages of sampling, and the samples employed

for computing β̂i(r) and θ̄i(r) are not independent. In addition, β̂i(r) is a random variable that

depends on sampling in previous stages (instead of a deterministic approximation of the optimal

value β∗i ), therefore the ordinary SLLN and CLT cannot be immediately applied. In Appendix B, we

derive the desired SLLN and CLT of θ̄i(r) used in AFS-SAA, for which we need more assumptions

than those in Kim and Henderson (2007).

For the ease of reading, we need to define some notation. Let β∗i be one of the first-order

critical points for the variance minimization problem of min
βi

Var [Yij − f(Cij ,βi)]. Let H denote

the support of the probability distribution of (Yij ,Cij), i.e., H is the smallest closed set such that

Pr{(Yij ,Cij) ∈ H} = 1. Let H2 be the set of all c values that appear in H, i.e., H2 = {c :

∃y such that (y, c) ∈ H}. Then, four assumptions are presented as follows.

Assumption 1. The random variable Yij is square integrable. Also, for all βi ∈ U , E[f(Cij ,βi)] =

0 and E[f2(Cij ,βi)] <∞, where U is a bounded open set containing B.

Assumption 2. The parameter set B is compact. For all c ∈ H2, the real-valued function f(c, ·)
is continuously differentiable on U .

Assumption 3. For all c ∈ H2, f(c, ·) is Lipschitz on U , i.e., there exists W (c) > 0 such that for

all βi, β
′
i ∈ U ,

|f(c,βi)− f(c,β′i)| ≤W (c)‖βi − β′i‖,

where ‖ · ‖ is a metric on Rp. Therefore,

sup
βi∈U

∣∣∣∣∂f(c,βi)

∂ (βi)d

∣∣∣∣ ≤W (c),
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where ∂ (βi)d means taking the partial derivative with respect to the dth component of the

vector βi for all c ∈ H2 and all d = 1, 2, . . . , p. Moreover, we assume that E
[

(W (Cij))
2 ] <∞.

Assumption 4. Suppose that a local optimization method (e.g., Newton method) with initial

guess β̃i0 is applied to solve the SAA optimization problem in Algorithm 4. Then, there

exists ε > 0 such that β̃i0 ∈ B(ε,β∗i ), where B(ε,β∗i ) is an ε-neighborhood of β∗i .
5

Assumption 1 is used to make the nonlinear CV estimator to be unbiased (i.e., E[Yij−f(Cij,βi)] =

θi). Assumption 2 implies that for each (Yij ,Cij) ∈ H, the estimator Yij − f(Cij , ·) is continuously

differentiable on U . Moreover, if f(c, ·) is continuously differentiable on the entire space Rp or on

an open set containing the closure of U , then Assumption 3 holds immediately. Under Assump-

tions 1-3, it can be shown that the variance function Var[Yij − f(Cij ,βi)], which is a function of

βi, is continuously differentiable in βi ∈ B (cf., Proposition 3.1 of Kim and Henderson (2007)).

Assumption 4 is used to provide the convergence of the updated control coefficient parameter β̂i to

a constant β∗. Note that Assumptions 1-3 are often used in the stochastic optimization literature

and we bring them directly from Kim and Henderson (2007), while Assumption 4 is commonly

used in the numerical optimization literature (see Griewank and Osborne (1983) and Nocedal and

Wright (1999) for more applications).

We are now ready to present our main results for AFS-SAA in Theorem 2.

Theorem 2. Let (Yij ,Cij) be the jth simulation outputs and controls from system i, which is

assumed to be independent for different i and j, where j = 1, 2, . . . and i = 1, 2, . . . , k. Let θi be

the mean performance measure of system i (i.e., θi = E[Yij ]) satisfying the IZ formulation, which

is assumed as θ1 − δ ≥ θ2 ≥ . . . ≥ θk, where δ is the predetermined IZ parameter. Suppose that

Assumptions 1–4 hold. Let the first-stage sample size n0 = n0(δ) be a function of δ, satisfying that

n0(δ) ≥ 2 and that n0 → ∞ and δn0 → 0 as δ → 0. Then, with the coefficient β̂ updating rule in

Algorithm 4, the AFS-SAA procedure provides a correct selection (i.e., selecting system 1 as the

best) with a probability at least 1− α as δ → 0.

Different from Theorem 1, in which the linear CV estimator implies the convergence of the

coefficient β̂ to the optimal β∗, resulting a variance reduction and thus a total sample size reduction

of the AFS, the nonlinear coefficient β̂ updating rule in Theorem 2 converges only to one of the

first-order critical points β∗, therefore may not guarantee a variance reduction or a total sample

size reduction of AFS-SAA (which is also true for AFS-SA). However, in practice, we observe

that both AFS-SAA and AFS-SA can provide significant total sample size savings based on our

simulation studies in Sections 4 and 5.

5When a local optimization method is applied to implement the SA approach in Algorithm 5, β̃i0 = β̂0
i , which is

equal to β̂i0, so we just assume that β̂i0 ∈ B(ε,β∗
i ).
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When deriving the CLT of θ̄i(r) used in AFS-SAA, we propose two ways. One is based on

δ → 0 implying that n0 → ∞, which is in accord with the setting of Theorem 1. Furthermore,

we also find that even though n0 does not converge to infinity (i.e., n0 is finite), the CLT of θ̄i(r)

still holds under some dependent conditions, and we keep this result in Appendix B for interested

readers.

It is also worthwhile pointing out that, the convergence of β̂ to a constant (i.e., Assumption 4)

allows us to obtain a constant limiting variance estimator, which is critical to properly scale the

discrete-time process. Based on that, we can prove Theorem 2 following exactly the same spirit as

proving Theorem 1.

We next consider employing the SA nonlinear CV estimator of Algorithm 2 for β̂ updating

scheme in the generic procedure AFS, which is called AFS-SA. Recall that, for system i, the SA

algorithm implements n iterations, each consists of m observations, resulting mn total number of

samples, to recursively update β̂ and then return θ̂SA(i, n) as in Algorithm 2. Therefore, we need

to assume that both n0 and L can be divided by m in order to recursively apply SA approach in

each stage.

In Step 4(i) of AFS-SA, we compute the estimator β̂i` = β̂wi where w = n0
m when ` = 1 and

w = L
m when ` = 2, 3, . . .. In particular, we need to pre-specify the starting solution β̂0

i = β̂i0 at

the first stage, while at other stage ` ≥ 2, we can simply set β̂0
i = β̂i,`−1 as obtained from the

previous stage. As applying the SA method in each stage, we may use the same sequence of step

sizes {aw, w = 1, 2, . . .}. In the following Algorithm 5, we describe the updating rule used in Step

4(i) of AFS-SA in detail.

Algorithm 5 (The SA nonlinear method for updating β̂).

Updating Rule: At stage ` = 1, let β̂0
i = β̂i0,

• For-Loop: For w = 1 to n0
m , compute

Aw
i (β̂w−1

i ) =
1

m

wm∑
j=(w−1)m+1

[
Yij − f(Cij , β̂

w−1
i )

]
,

gw−1(β̂
w−1
i ) =

−2

m− 1

wm∑
j=(w−1)m+1

{[
Yij − f(Cij , β̂

w−1
i )−Aw

i (β̂w−1
i )

]

∇
β̂i

[
f(Cij , β̂i)−

1

m

wm∑
l=(w−1)m+1

f(Cil, β̂i)
]∣∣∣∣

β̂i=β̂w−1
i

}
,

β̂wi = ΠB

(
β̂w−1
i − awgw−1(β̂

w−1
i )

)
.

Next w.
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• After-the-Loop. Then, let β̂i1 = β̂
n0
m
i .

At other stages ` = 2, 3, . . ., let β̂0
i = β̂i,`−1,

• For-Loop: For w = 1 to L
m , compute

Aw
i (β̂w−1

i ) =
1

m

n0+(`−2)L+wm∑
j=n0+(`−2)L+(w−1)m+1

[
Yij − f(Cij , β̂

w−1
i )

]
,

gw−1(β̂
w−1
i ) =

−2

m− 1

n0+(`−2)L+wm∑
j=n0+(`−2)L+(w−1)m+1

{[
Yij − f(Cij , β̂

w−1
i )−Aw

i (β̂w−1
i )

]

∇
β̂i

[
f(Cij , β̂i)−

1

m

n0+(`−2)L+wm∑
l=n0+(`−2)L+(w−1)m+1

f(Cil, β̂i)
]∣∣∣∣

β̂i=β̂w−1
i

}
,

β̂wi = ΠB

(
β̂w−1
i − awgw−1(β̂

w−1
i )

)
.

Next w.

• After-the-Loop. Then, let β̂i` = β̂
L
m
i .

Remark 4. Kim and Henderson (2007) provide a SLLN and CLT of the SA-based nonlinear CV

estimator whose assumptions can be verified by our Assumptions 1-3. Interested readers may refer

to Kim and Henderson (2007) for more details of the corresponding SLLN and CLT. Note that, with

additional assumption (i.e., Assumption 4) that the initial guess of a local optimization method is

in a neighborhood of the first-order stationary point β∗i , we have β̂i1 → β∗i , as n0 →∞. Then, the

initial β̂0
i at stage ` ≥ 2 will start from β∗i , implying that β̂i` = β∗i , which allows us to demonstrate

the asymptotic statistical validity of AFS-SA in the same manner as AFS-SAA. Thus, we omit

the theoretical result for AFS-SA.

Notice that rather than computing the θ̂SAA and θ̂SA in Algorithms 1 and 2, the purpose of

Algorithms 4 and 5 are used to compute the coefficient β̂i`. With these nonlinear β̂ updating

schemes, we are able to solve more general R&S problems, which will be demonstrated in the

following.

4 Numerical Experiments

In this section, we perform an extensive numerical evaluation to compare the proposed adaptive

procedures with existing fully sequential procedures with and without the CV technique. In partic-

ular, we implement two ordinary fully sequential procedures, that is, the KN procedure of Kim and

Nelson (2001), which employs the original sample means (i.e., without CV), and the T N procedure
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of Tsai and Nelson (2010), which employs the CS estimators (i.e., with CV). The details of both

KN and T N are presented in Appendix C.

We also implement an alternative fully sequential procedure, denoted as AFS+, where the

newly updated β̂i` will be applied to all r observations collected in all stages,6 instead of being

applied to only observations collected in the (`+1)st stage as in AFS. AFS+ serves as a heuristic

benchmark for AFS, which implies a lower bound of the required number of simulated observations

that AFS can achieve. That is because as applying the most recent β̂, which tends to be more

accurate than previously estimated β̂ as using more samples, to all on-hand observations, AFS+

could sharpen the comparison and thus eliminate the inferior systems earlier than AFS does.

However, the disadvantages of AFS+ are clear. First, we cannot prove its statistical validity

even in the asymptotic regime. Second, it requires a much larger computational overhead since it

needs to retain all individual observations from all surviving systems and recompute the point and

variance estimators whenever β̂ is updated. This could require substantial data storage capacity

when the number of competing systems is large. By contrast, AFS only needs to maintain the

summary statistics (
∑r

j=1 θ̂ij ,
∑r

j=1(θ̂ij)
2) and perform summation (for the observations in the

current stage) to update the point and variance estimators.

The system outputs are represented by various configurations of k normal distributions, among

which system 1 is always the best system, i.e., has the largest true mean in all cases. We drop the

subscript j for convenience. Let Yi be a simulation observation from system i, for i = 1, 2, . . . , k.

For tractability and simplicity, we assume that each system has one control (i.e., qi = 1 for all i)

for both linear and nonlinear cases.

For the linear case, we assume that the observation can be represented as

Yi = θi + βi(Ci − µi) + εi,

where {εi, i = 1, 2, . . . , k} are N(0, σ2
ε ) random variables. The input random variables {Ci, i =

1, 2, . . . , k} are N(0, σ2
c ) random variables (i.e., µi = 0) and independent of {εi, i = 1, 2, . . . , k}.

We also set βi = 1 for each system i = 1, 2, . . . , k. Therefore, {Yi, i = 1, 2, . . . , k} are distributed

as N(θi, σ
2
y) random variables, where σ2

y = σ2
c + σ2

ε . The squared correlation coefficient between Yi

and Ci is R2
Y,C = σ2

c/(σ
2
c + σ2

ε ) for each system i = 1, 2, . . . , k.

For the nonlinear case, we adopt the polynomial CV model introduced by Nelson (1987) by

6That is, in Step 1 and Step 4(ii) of AFS+, we need to redefine and recompute the jth controlled observation

from any surviving system i as: θ̂ij = Yij − f
(
Cij , β̂i`

)
, for all j = 1, 2, . . . , r, where r is the current sample counter

satisfying n0 + (`− 1)L+ 1 ≤ r ≤ n0 + `L.
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assuming that the observation can be represented as the following nonlinear function,

Yi = θi + βi1(Ci − µi) + βi2(Ci − µi)3 + εi,

where βi = (βi1, βi2)T and {εi, i = 1, 2, . . . , k} are N(0, σ2
ε ) random variables. We assume that

µi = 0 and therefore {Ci, i = 1, 2, . . . , k} are N(0, σ2
c ) random variables and independent of

{εi, i = 1, 2, . . . , k}. It should be noticed that E[(Ci − µi)] = E[(Ci − µi)
3] = 0 because Ci is

assumed to be normally distributed. We also set βi1 = βi2 = 1 for each system i = 1, 2, . . . , k.

Therefore, {Yi, i = 1, 2, . . . , k} are random variables with mean θi and variance σ2
y = σ2

c + 6σ4
c +

15σ6
c + σ2

ε . Notice that the assumed nonlinear function is intrinsically linear,7 but we choose to

use the nonlinear CV estimation for evaluating the efficiency of both AFS-SAA and AFS-SA.

This intrinsically linear function also allows us to conveniently specify the value of R2
Y,C, where

C = ((Ci − µi), (Ci − µi)3). After some tedious algebra, we can obtain that R2
Y,C = (3375σ18

c +

1350σ16
c + 405σ14

c + 144σ12
c + 27σ10

c + 6σ8
c + σ6

c )/σ
2
y . According to the notation defined in Section

2.2, a natural nonlinear CV estimator is θ̂i = Yi − β̂i1(Ci − µi) − β̂i2(Ci − µi)3, which means that

f
(
Ci, β̂i

)
= β̂i1(Ci − µi) + β̂i2(Ci − µi)3.

We compare the performance of each procedure on different variations of the systems, with

examining factors including the practically significant difference δ, the number of systems k, the β̂

updating frequency L, the configurations of the system means θi, and the squared correlation coef-

ficient between outputs and controls R2. Notice that CRNs are not employed. The configurations,

the experimental design, and the results are described below.

4.1 Configurations and Experimental Design

We examine the slippage configuration (SC) of the true means of the systems in which θ1 is set to

exactly δ, while θ2 = θ3 = · · · = θk = 0. This is the least favorable scenario in order to achieve the

requested PCS, because all the inferior systems are very close to the best system. We choose δ =

σy/
√
n0; therefore, the IZ parameter can be interpreted as one standard deviation of the first-stage

sample mean. To examine the efficiency of these procedures in eliminating noncompetitive systems,

the configuration of monotone-decreasing means (MDM) is also used. In the MDM configuration,

the means of systems are determined according to the following formula: θ1 = δ and θi = θ1− (i−
1)(δ/2), for i = 2, 3, . . . , k.

The number of systems simulated in each experiment is varied with k = 10, 30, 50, 100. In all

experiments, we set the output variance σ2
y = 2, the nominal PCS 1−α = 0.95, and the first-stage

sample size n0 = 20, for all procedures. In addition, for the T N -type procedure, which requires a

7Interested readers may refer to Chapter 13 of Kutner et al. (2005) for the reasons why the linear regression may
not be appropriate for a nonlinear response function that is intrinsically linear.
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preliminary-stage to estimate the control coefficient, we then set the preliminary-stage sample size

m0 = 10 and 20 (or 30) when employing the linear and nonlinear CV estimation, respectively. These

algorithm parameter settings are based on the guidelines provided in Tsai and Nelson (2010) and

Tsai and Kuo (2012). For the proposed adaptive fully sequential procedures, we examine different

β̂ updating frequency L = {1, 5, 20} for AFS, AFS+ and AFS-SAA, and L = {2, 6, 20} (with

m = 2) for AFS-SA (since AFS-SA requires L > 1). For all procedures with CV estimation,

we set the initial solution β̂i0 = 0. When using the SA algorithm, we set the step-size sequence

aw = 0.6/w, and the range of the parameter set B equals to [−10, 10].

For each configuration, 500 trials (i.e., complete macro-repetitions) of each procedure are per-

formed to compare the performance measures, including the estimated PCS and the average number

of simulated observations per system (ANS). To simplify the presentation, we round the values of

PCS and ANS to the nearest hundredth and integer number, respectively.

4.2 Results for Procedures with Linear Control Variates

In Table 1, we investigate the effect of different levels of correlations (i.e., R2
Y,C) and β̂ updating

frequency (i.e., L) on the performance of both AFS and AFS+ with linear CV estimation, and

compare them to KN and T N in the same slippage configuration.

From the results in Table 1, we have several interesting findings. First, AFS performs quite well,

in terms of ANS, compared with KN and T N , in all tested cases with various parameter settings.

To be more specific, we notice that T N obtains at least a 20% reduction in ANS, compared to KN ,

as long as R2
Y,C is greater than or equal to 0.3.8 The adaptive procedure AFS can further improve

the statistical efficiency with at least a 30% reduction in ANS, compared to T N , which indicates the

importance of adaptively updating β̂. Second, even though we demonstrate the needs of updating β̂,

frequent updating is not necessary. For instance, there is no significant improvement of saving ANS

when updating β̂ every round as obtaining one additional observation from all surviving systems

(i.e., L = 1), compared with doing that every 20 rounds (i.e., L = 20). Third, the experimental

results also indicate that, compared to AFS, AFS+ achieves a little improvement in ANS,9 which

in other words means that the performance of AFS has nearly achieved the lower bound in terms

of total sample sizes. Hence, it is likely that the additional improvement in ANS by using AFS+

would be negated by its increased computational overhead as compared to AFS. Last but not

least, all procedures, including the heuristic AFS+, achieve the nominal PCS level 0.95 in all

configurations, which validates the statistical guarantee of these procedures.

8The larger value of the correlation R2
Y,C is, the more benefit then T N and AFS could provide.

9In the paper, we only present the results of AFS+ under the setting of R2
Y,C = 0.3 for the reason of brevity. We

have obtained similar results in other parameter settings.
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Table 1: Performance measures for AFS and AFS+ (with linear CV estimation) in comparison
with KN and T N in the SC when m0 = 10, n0 = 20, and 1− α = 0.95.

R2
Y,C L

k = 10 k = 30 k = 50 k = 100
PCS ANS PCS ANS PCS ANS PCS ANS

KN 0.97 316 0.99 401 0.98 438 0.99 508

T N 0.3 0.98 256 0.98 324 0.99 365 0.99 407
AFS 0.3 20 0.97 173 0.97 209 0.98 226 0.97 250

0.3 5 0.95 173 0.96 206 0.98 225 0.97 248
0.3 1 0.98 172 0.97 206 0.97 221 0.97 245

AFS+ 0.3 20 0.95 166 0.95 204 0.98 221 0.98 243
0.3 5 0.97 163 0.98 200 0.99 217 0.99 240
0.3 1 0.98 161 0.98 197 0.97 213 0.97 240

T N 0.5 0.98 190 0.98 237 0.99 266 0.99 294
AFS 0.5 20 0.95 122 0.96 148 0.96 160 0.97 178

0.5 5 0.95 122 0.95 146 0.96 158 0.98 176
0.5 1 0.95 120 0.98 144 0.97 158 0.97 175

T N 0.7 0.98 116 0.98 146 0.99 161 0.98 183
AFS 0.7 20 0.97 73 0.96 87 0.96 94 0.99 104

0.7 5 0.96 72 0.96 87 0.96 94 0.99 104
0.7 1 0.95 72 0.95 87 0.96 93 0.96 103

Table 2: Performance measures for AFS (with linear CV estimation) in comparison with KN and
T N in the MDM configuration when m0 = 10, n0 = 20, and 1− α = 0.95.

R2
Y,C L

k = 10 k = 30 k = 50 k = 100
PCS ANS PCS ANS PCS ANS PCS ANS

KN 1 211 1 133 1 103 1 70

T N 0.3 0.99 182 1 118 1 92 1 68
AFS 0.3 20 0.99 115 1 70 1 55 1 40

0.3 5 1 115 1 70 1 54 1 40
0.3 1 1 115 1 69 1 54 1 40

T N 0.5 1 133 1 87 1 70 1 55
AFS 0.5 20 1 83 1 52 1 42 1 33

0.5 5 1 83 1 52 1 42 1 33
0.5 1 1 82 1 51 1 42 1 33

T N 0.7 1 82 1 58 1 51 1 43
AFS 0.7 20 1 50 1 35 1 31 1 27

0.7 5 1 49 1 35 1 31 1 27
0.7 1 1 49 1 35 1 31 1 27
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In Table 2, we compare the performance ofAFS with KN and T N in the MDM configuration.10

Notice that the empirical PCS performance for all procedures is closer to 1, which is not so surprising

since many of the inferior systems become far away from the true best in the MDM configuration.

It is worthwhile pointing out that the advantages of the proposed adaptive procedure in terms of

ANS as aforementioned still hold. However, there is less incremental benefit when increasing the

frequency of updating β̂, which reinforces our conclusion that adaptively updating β̂ is needed but

not necessary to be very frequent.

4.3 Results for Procedures with Nonlinear Control Variates

Since there are no existing R&S procedures designed to handle nonlinear CV, we first modify T N
procedure in Tsai and Nelson (2010) to be suitable for the nonlinear CV estimation with SAA and

SA approaches, denoted as T N -SAA and T N -SA, respectively.

For T N -SAA, we compute the estimator β̂i(m0) as in the first-phase of the SAA algorithm

(i.e., Algorithm 1) in Section 2.2, where m0 serves as the preliminary-stage sample size. Then, the

values of β̂i(m0) and the variance estimator are fixed in subsequent elimination stages. Based on

Assumption 1 in Section 3.3 and the similar derivation of Theorem 1 in Tsai and Nelson (2010),

10We do not report the results of AFS+ since it performs quite similar to AFS.

Table 3: Performance measures for AFS-SAA (with nonlinear CV estimation) in comparison with
KN and T N -SAA in the SC when m0 = 20 or 30, n0 = 20, and 1− α = 0.95.

R2
Y,C L

k = 10
PCS ANS

k = 30
PCS ANS

k = 50
PCS ANS

k = 100
PCS ANS

KN 0.97 316 0.99 401 0.98 438 0.99 508

T N -SAA(20)
T N -SAA(30)
AFS-SAA

0.3
0.3
0.3
0.3
0.3

20
5
1

0.96
0.98
0.97
0.96
0.97

347
293
182
178
178

0.95
0.97
0.95
0.97
0.97

444
370
219
215
210

0.97
0.99
0.97
0.97
0.98

487
400
235
231
230

0.95
0.98
0.97
0.96
0.98

542
444
258
254
252

T N -SAA(20)
T N -SAA(30)
AFS-SAA

0.5
0.5
0.5
0.5
0.5

20
5
1

0.95
0.96
0.95
0.97
0.95

245
216
127
125
125

0.95
0.98
0.97
0.96
0.97

311
271
157
155
154

0.95
0.98
0.97
0.97
0.96

346
292
168
165
164

0.95
0.98
0.97
0.96
0.98

387
329
184
179
179

T N -SAA(20)
T N -SAA(30)
AFS-SAA

0.7
0.7
0.7
0.7
0.7

20
5
1

0.97
0.98
0.95
0.95
0.97

157
144
78
76
73

0.96
0.98
0.97
0.97
0.95

199
176
93
91
90

0.95
0.97
0.95
0.97
0.96

221
191
101
98
96

0.96
0.98
0.97
0.97
0.96

243
210
110
107
106
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we can obtain the finite-sample statistical validity of T N -SAA. We choose m0 = 20 and m0 = 30

to investigate the impact of the preliminary-stage sample size on the performance of T N -SAA.

Other parameters settings are the same as in the linear CV case. Table 3 summarizes the results

of KN , T N -SAA with m0 = 20 or 30 (denoted by T N -SAA(20) and T N -SAA(30), respectively,

in the table), as well as AFS-SAA in the SC.

From Table 3, we notice that T N -SAA, as well as KN and AFS-SAA, attains the prespecified

PCS level in the experiments. However, T N -SAA may perform worse than KN if the preliminary-

stage sample size m0 is not appropriately chosen. For instance, when the correlation level is low

(i.e., R2 = 0.3), T N -SAA with m0 = 20 requires a larger sample size than KN . This is probably

due to the fact that the SAA estimator β̂i(m0) is consistent but biased, and the resulting bias may

severely inflate the required sample size especially when m0 is not large enough. Similar to the

findings in the previous sections, the performance of AFS-SAA is uniformly better than that of

KN and T N -SAA. As expected, there is still little improvement in terms of ANS for AFS-SAA
when increasing the updating frequency of β̂.

Table 4: Performance measures for AFS-SA (with nonlinear CV estimation) in comparison with
KN and T N -SA in the SC when m0 = 30, n0 = 20, and 1− α = 0.95.

R2
Y,C L

k = 10 k = 30 k = 50 k = 100
PCS ANS PCS ANS PCS ANS PCS ANS

KN 0.97 316 0.99 401 0.98 438 0.99 508

T N -SA(30× 1)
T N -SA(5× 6)
T N -SA(2× 15)
AFS-SA

0.3
0.3
0.3
0.3
0.3
0.3

20
6
2

0.98
0.97
0.95
0.95
0.98
0.97

332
345
397
207
202
211

0.98
0.97
0.98
0.97
0.97
0.97

409
445
512
248
242
250

0.98
0.96
0.97
0.96
0.96
0.98

451
469
544
267
252
265

0.99
0.96
0.98
0.97
0.99
0.97

508
539
616
283
276
289

T N -SA(30× 1)
T N -SA(5× 6)
T N -SA(2× 15)
AFS-SA

0.5
0.5
0.5
0.5
0.5
0.5

20
6
2

0.98
0.97
0.96
0.96
0.98
0.97

298
320
363
172
168
177

0.97
0.95
0.95
0.96
0.98
0.98

391
428
473
196
192
205

0.99
0.96
0.95
0.97
0.96
0.98

432
443
525
207
201
216

0.97
0.96
0.95
0.97
0.96
0.99

467
496
584
225
219
233

T N -SA(30× 1)
T N -SA(5× 6)
T N -SA(2× 15)
AFS-SA

0.7
0.7
0.7
0.7
0.7
0.7

20
6
2

0.96
0.96
0.96
0.97
0.98
0.98

309
336
364
137
133
145

0.95
0.95
0.95
0.98
0.96
0.97

386
381
448
156
152
160

0.95
0.95
0.95
0.96
0.98
0.98

394
403
475
168
166
170

0.96
0.96
0.95
0.98
0.98
0.98

443
458
530
177
175
182
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For T N -SA, we compute the estimator β̂i(m0) as in the SA algorithm (i.e., Algorithm 2)

described in Section 2.2, based on a set of preliminary-stage m0 samples. That is, in the preliminary

stage, the SA algorithm implements n iterations, each consists of m observations, to recursively

update β̂i (i.e., m×n = m0 = 30). We specify different settings of m×n in order to evaluate their

impact on the performance of T N -SA. The values of coefficient estimator β̂i(m0) and variance

estimator of T N -SA are both fixed in subsequent elimination stages. Other parameter settings

remain the same. Table 4 summarizes the results of KN , T N -SA with different m × n (denoted

by T N -SA(30 × 1), T N -SA(5 × 6), and T N -SA(2 × 15), respectively, in the table), as well as

AFS-SA in the SC.

From Table 4, we have several interesting findings. First, we notice that a larger value of m

makes T N -SA more efficient in terms of reduced ANS, which could be due to the fact that the

variance of the gradient estimator g(β̂) decreases as m increases, thus leading to smaller variance

of θ̂SA. Second, it is also interesting to point out that the value of ANS in AFS-SA initially

decreases and then increases when the value of L is decreased, which implies that choosing an

appropriate value of L becomes a sophisticated task for AFS-SA. Third, even though in this

situation, AFS-SA in general performs much better than both KN and T N -SA. Last but not

least, when comparing Table 3 with Table 4, we find that the performance of AFS-SAA tends to

be superior to AFS-SA in terms of ANS, and both procedures achieve the requested PCS level. We

further evaluate the experimental performance of AFS-SA with different choices of the step-size

sequence aw = z/w, where z = {0.1, 0.2, . . . , 2.0}, in Table 5. We find that AFS-SA achieves the

PCS nominal value of 0.95 in all settings, and reveals the best performance in terms of ANS when

z = 0.5 or 0.8. The ANS performance is getting worse when the value of z becomes larger, but is

still better than both KN and T N -SA.

5 Illustrative Examples

In this section, we consider two illustrative examples, i.e., the mean time to failure (MTTF) problem

in a reliability system and the equity investment problem in a financial engineering system, which

can be modeled as a continuous-time Markov chain (CTMC) with finite state space and a discrete-

time Markov chain (DTMC) with infinite state space, respectively. We examine the efficiency of

our proposed adaptive procedures in comparison with conventional KN and T N -type procedures.

5.1 The MTTF Problem

For simplicity, we suppose that the reliability system consists of two components that work as

an active and a spare component. The spare component becomes active when the current active
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Table 5: Performance measures for AFS-SA (with nonlinear CV estimation) in the SC with
different settings of the step-size sequence aw = z/w, where z = {0.1, 0.2, . . . , 2.0}, when R2

Y,C =
0.3, L = 20, k = 30, n0 = 20, and 1− α = 0.95.

z PCS ANS z PCS ANS

0.1 0.96 315 1.1 0.98 258
0.2 0.98 279 1.2 0.97 266
0.3 0.97 260 1.3 0.97 271
0.4 0.96 251 1.4 0.97 281
0.5 0.98 247 1.5 0.97 285
0.6 0.97 250 1.6 0.97 295
0.7 0.96 249 1.7 0.98 303
0.8 0.98 247 1.8 0.97 314
0.9 0.95 250 1.9 0.97 317
1.0 0.97 262 2.0 0.97 327

component fails, while the failed component immediately commences repair. The failed component

becomes the spare when its repair is completed. Only one component at a time can be repaired,

therefore the system fails as long as both components have failed (see Nelson (2013) for more

detailed introduction).

For tractability, the failure times and the repair times of the components are assumed to be

independently and exponentially distributed so that the system may be modeled as a CTMC. Let

Z = {Z(t) : t ≥ 0} denote the number of functional components at time t, defined on the finite

state space Σ = {0, 1, 2}. Suppose that Z reaches the absorbing state 0 almost surely starting

from Z(0) = 2 and let T = inf{t ≥ 0 : Z(t) = 0|Z(0) = 2} be the time till absorption (i.e., time

to failure). We consider k = 10 systems, corresponding to 10 configurations of the failure rate

(denote by λi) and repair rate (denote by γi), i = 1, 2, . . . , k. Accordingly, let Zij and Tij denote

the sample path of system states and the system failure time from the jth replication of system i.

Then, the MTTF (i.e., E[Tij ]) can be computed analytically, as presented in descending order in

Table 6. Notice that a system with a larger MTTF is better, so that system 1 is the best system.

We want to select system 1 with the proposed and existing R&S procedures, where the parameters

λi and γi are known for each configuration (assuming that their MTTF are unknown and need

to be estimated by simulation). The choices of effective linear and nonlinear control variates are

introduced in the following subsection.

5.1.1 Constructions of Linear and Nonlinear Control Variates

When using the linear CV estimation, we simply let the simulation output Yij = Tij , and consider

two possible choices of the controls. The first used control C
(1)
ij is the average lifetime of a component
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Table 6: The ten configurations of Markovian reliability systems and their MTTF.

system i 1 2 3 4 5 6 7 8 9 10
λi 1.00 1.04 0.96 0.99 1.03 1.02 0.98 0.95 1.01 0.97
γi 8.0 8.4 7.0 7.5 8.2 8.0 7.3 6.8 7.8 7.1

MTTF 10.000 9.689 9.679 9.672 9.671 9.650 9.642 9.640 9.627 9.608

during the sample path Zij (with E[C
(1)
ij ] = 1/λi). For instance, suppose that there are 50 compo-

nent failures of the sample path Zij , and their life durations can be denoted as {D1, D2, . . . , D50}.
Then, we can compute C

(1)
ij = 1/50

∑50
d=1Dd. The other used control, denote by C

(2)
ij , is the number

of times the sample path Zij enters state 1, which follows a geometric distribution with parameter

λi/(λi + γi). Then, we have E[C
(2)
ij ] = (λi + γi)/λi.

When using the nonlinear CV estimation, we need to introduce the approximating martingales

technique in Henderson and Glynn (2002) in order to construct a nonlinearly parameterized family

of control variates. In the following, we illustrate the construction step-by-step, aiming to provide

some guidelines as applying to more complicated MTTF problems or even other types of CTMC

problems.

As mentioned by Ahamed et al. (2006), the MTTF problem can be regarded as optimizing the

expected cost prior to absorption for finite state-space Markov chains. That is, we let c : Σ → R

be a given cost function and then define the expected cost accrued until absorption as θ(x) =

E
[ ∫ T

0 c (Z(s)) ds|Z(0) = x
]
, for all x ∈ Σ\{0}, and set θ(0) = 0. Then, we have θ(x) = MTTF when

setting c(Z) = 1 and x = 2. We present the following proposition of Henderson and Glynn (2002),

which is applied to estimate the expected cost prior to absorption, for identifying an appropriate

class of approximating martingales, and based on which the nonlinear function f
(
Cij , β̂i

)
can be

constructed accordingly.

Proposition 1. (Proposition 2 in Henderson and Glynn (2002)) Let u : Σ → R be a real-valued

function on the state space Σ with u(0) = 0, and for t ≥ 0 let

M(t) = u (Z(t))− u (Z(0))−
∫ t

0
Gu (Z(s)) ds, (5)

where G is the transition rate matrix of the CTMC {Z(t), t ≥ 0}. Then, for any function u(·), the

stochastic process M(·) is a Dynkin martingale. Moreover, if E [T |Z(0) = x] <∞, then

E [M(T )|Z(0) = x] = 0.

Suppose that the basis function u(Z) = u(Z;β) = β1Z
β2 , with the dimension of β being p = 2,
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which has been successfully used and recommended by Kim and Henderson (2004). Then, the last

term in Equation (5) is an integral function based on G and u(·). Interested readers may refer to

Henderson and Glynn (2002) for more details of computation. It should be noticed that Proposition

1 claims that the expectation of M(T ) is zero, which means it can be served as a parameterized

control variate function. Therefore, we let β̂i = (β̂i1, β̂i2)T and the nonlinear function f(Cij , β̂i)

can be formulated as follows,

f(Cij , β̂i) = M(Tij)

= u(Zij(Tij))− u(Zij(0))−
∫ Tij

0
Gu(Zij(s)) ds

= 0− β̂i12β̂i2 − T (1)
ij

(
γiβ̂i12β̂i2 − (λi + γi)β̂i1

)
− T (2)

ij

(
λiβ̂i1 − λiβ̂i12β̂i2

)
. (6)

Equation (6) holds because Zij(Tij) = 0, Zij(0) = 2, and the last two terms follows from the

calculation of the integral function, where T
(1)
ij and T

(2)
ij represent the total time Zij(t) stays in

state 1 and 2, respectively.

Given the constructions of linear and nonlinear CVs, we are ready to set the parameters in the

MTTF problem.

5.1.2 Problem Settings and Simulation Results

For KN , T N -type, and the proposed adaptive procedures, we all set the first-stage sample size

n0 = 20. In addition, we set the preliminary-stage sample size m0 = 30 for all T N -type procedures,

and the β̂ updating frequency L = 20 for our proposed procedures.

When using the linear CV estimation, we let T N -1 and T N -2 denote the T N procedures

being applied with the controls C
(1)
ij and C

(2)
ij , respectively. Our proposed procedures with linear

CV approach, i.e., AFS and AFS+, will be applied with the control C
(2)
ij (we will explain the

reason later). When using the SA algorithm in either T N -SA or AFS-SA, we set the initial

solution β̂i0 = −1 and the step-size sequence aw = 0.05/w. In T N -SA, we implement n = 6

iterations with each consists of m = 5 observations, to compute β̂i(m0) in the preliminary stage.

The nominal PCS is set to 1 − α = 0.95. The IZ parameter is set to δ = 0.311, which equals

to the difference between the MTTFs of systems 1 and 2, and thus the correct selection is to

choose system 1. In addition to the performance measures of PCS and ANS, we also report the

CPU running time per replication (in seconds), based on 1,000 complete macro-replications for all

procedures, in Table 7.

In the following, we explain the interesting findings from Table 7. First of all, the observed

PCS for all procedures exceeds the nominal value of 0.95. To check the normality of Tij and
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Table 7: Results for the proposed procedures applied to the MTTF problem in comparison with
KN and T N -type procedures in 1,000 trials with δ = 0.311 and 1− α = 0.95.

Procedure PCS ANS CPU time (sec.) Procedure PCS ANS CPU time (sec.)

KN 0.964 6,863 28.21 T N -SAA 0.985 3,088 13.44

T N -1 0.963 6,108 26.06 T N -SA 0.964 4,941 15.59

T N -2 0.984 3,637 13.64 AFS-SAA 0.982 1,784 9.12

AFS 0.984 2,645 11.19 AFS-SA 0.976 3,402 11.91

AFS+ 0.982 2,572 10.96

C
(1)
ij , we implement Shapiro-Wilk goodness of fit test (cf., Royston (1993)) using MATLAB with a

significance level of 0.05. The results suggest that both Tij and C
(1)
ij are intrinsically not normal,

but can be well approximated by normal distribution when taking batches with 50 samples per

batch. This illustrates the robustness of our procedures when the normality assumption is violated.

Second, in terms of ANS, T N -1 and T N -2 are both superior to KN , meanwhile T N -2 is much

superior to T N -1. The difference in the efficiency between T N -1 and T N -2 can be explained by

the estimated correlations between Yij and C
(1)
ij or C

(2)
ij based on 10, 000 replications (for system 1),

which is R2
Y,C(1) = 0.19 and R2

Y,C(2) = 0.63, respectively. It is also the reason why our adaptive fully

sequential procedures with linear CV estimation, i.e., AFS and AFS+, adopt C
(2)
ij as the controls.

Third, in fact, both AFS and AFS+ can further yield a significant improvement in terms of ANS

over the ordinary fully sequential procedure. For instance, there is a reduction of 27% and 29%

in the ANS of AFS and AFS+ even when compared to T N -2. Fourth, however, the reduction

in CPU time compared to T N -2 is only 18% and 19% for AFS and AFS+, respectively, which

is due to the fact that the adaptive procedures implement more iterations of linear regressions. It

should also be noticed that, in this example, the computational overhead of AFS+ for computing

the point and variance estimators, whenever β̂ is updated, is not as significant as expected, because

we have only 10 competing systems.

Moreover, similar to the numerical results in the previous section, the SAA approach demon-

strates better performance than the SA approach when being employed in adaptive procedures,

which is also consistent with the comparative results for the applications regarding nonlinear CV

estimation in Kim and Henderson (2007). In Table 7, we can observe that there is a significant

reduction of 42% in terms of ANS from T N -SAA to AFS-SAA. If we compare the performance

of all procedures, we can see that AFS-SAA requires the fewest observations and therefore the

smallest CPU time. On one hand, the adaptive procedures with linear CV estimation is easily-

implemented, but its performance may depend heavily on an appropriate choice of effective controls.

On the other hand, the application of nonlinear CV estimation is not so straightforward, but it
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may achieve a more substantial saving in sampling cost.

Talking about the sampling cost, it should be noted that the CPU running time is mainly spent

on two tasks: (i) generating a number of simulated observations from each system (which we denote

as the sampling cost), and (ii) executing specific method to compute β̂i and then obtain θ̄i(r) (which

we denote as the computing cost). We also calculate the computing costs of performing task (ii)

in AFS, AFS-SAA and AFS-SA, which involves implementing the linear regression for AFS,

the nonlinear optimization solver for AFS-SAA, and the SA recursive algorithm for AFS-SA.

The corresponding computational time values are 1.89, 4.75 and 2.75 seconds, respectively. We

observe that the computing cost accounts for 17%, 52%, and 23% of the overall CPU time for

these three adaptive procedures. The nonlinear optimization used in the SAA algorithm can be

computationally intensive relative to the linear regression or the SA iterative algorithm, but it may

occupy a small fraction of the required effort for long simulation runs. In fact, in many large-scale

or complicated simulation problems (for which VRTs are most needed), the computing cost should

be small relative to the sampling cost because the simulated observations themselves are expensive,

as argued in Avramidis and Wilson (1996). For such problems, the execution of optimization solver

or algorithm rarely dominates the overall running time.

5.2 The Equity Investment Problem

In this subsection, we consider an equity investment problem. Suppose that a fund manager has

a certain amount of money and wants to invest all of them in one company. Each company has

an initial asset price and this price changes with time. Specifically, we assume that the asset price

obeys a stochastic process model. The manager can only make the profit (say a dividend) when

the asset price of the company exceeds a preset threshold K at a preset date D, and the amount

of the profit is E[(A(D) − K)+], where A(D) is the asset price at date D and x+ = max{0, x}.
While there are several candidate companies, the fund manager wants to invest the company with

the highest expected profit return, i.e., the one with the largest E[(A(D)−K)+].

The following problem description is primarily adapted from Kim and Henderson (2007). Let

{A(t), t ≥ 0} denote the asset price of the company at time t, which is assumed to follow a geometric

Brownian motion process with constant parameters cr and cv (known as the risk-free interest rate

and volatility, respectively). Suppose that the asset price is monitored at a discrete time sequence

{td = d∆t, d = 0, 1, . . . , T}, where ∆t = D/T is the time between consecutive monitoring dates.

For notational simplification, we let Ad represent the underlying asset price at the dth monitoring

point (i.e., Ad = A(td)). Similar to the barrier option setting in Kim and Henderson (2007), we also

assume that there is an upper barrier level Hu and a lower barrier level H`, where H` < K < Hu. If

the asset price Ad reaches the barriers, i.e., Ad /∈ [H`, Hu], then the profit is zero and the manager
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Table 8: The ten configurations of company’s assets and their expected profit returns.

system i 1 2 3 4 5 6 7 8 9 10
A0 130 125 120 115 110 105 100 95 90 85
K 125 120 115 110 105 100 95 90 85 80

U∗T (A0,K) 6.81 9.08 10.57 11.27 11.40 11.23 10.93 10.60 10.27 9.93

gets nothing. If the asset price has not crossed [H`, Hu] by the terminal time D, then the profit the

manager gets is (AT −K)+. Suppose that the initial asset price A0 is within the interval [H`, Hu].

Then, the price Ad at time d, d = 1, 2, . . . , T , can be expressed in the following recursive form,

Ad = Ad−1exp
{

(cr − c2
v/2)∆t+ cv

√
∆tBd

}
, d = 1, 2, . . . , T,

where B1, . . . , BT are i.i.d. standard normal random variables N(0, 1). Note that the profit that

the manager can get depends on the complete path {Ad, d = 0, 1, . . . , T}, and the expected profit

is given by

exp(−crD)E[1{τ>T}(AT −K)+]

where τ = inf {d ≥ 0 : Ad /∈ [H`, Hu]} and 1{E} = 1 if the event E is true, otherwise it equals to 0.

Since the discount factor e−crD is constant, the problem reduces to estimating the expected profit

with the initial asset price A0. Namely, our goal is to estimate U∗T (A0,K), which is defined as

U∗T (A0,K) =

 E
[
1{τ>T}(AT −K)+|A0

]
, if A0 ∈ [H`, Hu],

0, if A0 = 0 or A0 /∈ [H`, Hu].

Following the experimental settings of Kim and Henderson (2007), we set the parameters D = 1,

T = 6, cr = 0.05, cv = 0.1, and [H`, Hu] = [50, 150]. We consider k = 10 companies, corresponding

to 10 systems with different configurations of the initial asset price A0 and the preset threshold

K along with their expected profit (i.e., U∗T (A0,K)), which are estimated with 107 replications, as

presented in Table 8. Notice that a system with a larger expected profit is better, so that system 5

is the best system.

In order to demonstrate how to applyAFS-SAA andAFS-SA to solve the investment problem,

we need to introduce another approximating martingales technique in Henderson and Glynn (2002)

to construct the nonlinear control variates. Let Ãd = 1{τ>d}Ad, for d = 1, 2, . . . , T . Then {Ãd :

0 ≤ d ≤ T} is a DTMC on the state space Σ = [H`, Hu]∪{0} (assuming that A0 ∈ Σ). We present

Proposition 2, based on which the nonlinear function f
(
Cij , β̂i

)
can be constructed accordingly.

Proposition 2. (Proposition 5 in Henderson and Glynn (2002)) Let ud : Σ→ R be a sequence of
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bounded real-valued functions on the state space Σ with ud(0) = 0, where d = 0, 1, . . . , T − 1. Let

M0 = 0, and for 1 ≤ t ≤ T let

Mt =

t∑
d=1

[
uT−d(Ãd)− P (Ãd−1, ·)uT−d(·)

]
, (7)

where P is the transition probability kernel of the DTMC {Ãd : 0 ≤ d ≤ T − 1}, which is defined

as P (x, ·)c(·) = E[c(Ã1)|Ã0 = x] for any real-valued function c : Σ→ R. Then, for any sequence of

functions {ud : 0 ≤ d ≤ T}, the stochastic process {Mt : 0 ≤ t ≤ T} is a martingale.

As suggested by Kim and Henderson (2007)11, a simple parameterization for the basis functions

us(·) = us(·; β̂), s = 0, 1, . . . , T − 1, is given by

us(x; β̂) =


0, if x = 0,

(x−K)+, if s = 0,

xβ̂4(s−1)+2 β̂4(s−1)+1 + xβ̂4(s−1)+3 + β̂4s, if s = 1, 2, . . . , T − 1 and x 6= 0,

(8)

where x = Ãd, s = T − d, and β̂ = (β̂1, β̂2, . . . , β̂4(T−1))
T. It can be shown that E[MT (β̂)] = 0

for any β̂, where MT is given by Equation (7) with us specified in Equation (8) (cf., Henderson

and Glynn (2002)). Then, we set f(Cij , β̂i) = MT , which is the nonlinear function for system

i in replication j. Therefore, (ÃT − K)+ −MT can be regarded as a nonlinear CV estimator of

U∗T (A0,K).

We compare our proposed procedures, AFS-SAA and AFS-SA, with KN , in which the pa-

rameters are set as follows. We set the first-stage sample size n0 = 20 for the three procedures,

and set the β̂ updating frequency L = 20 and initial solution β̂i0 = 0 for both AFS-SAA and

AFS-SA. In addition, for AFS-SA, we need to specify the step-size sequence as aw = 5(10)−4

105+w2/3 .

The nominal PCS is set to 1− α = 0.95. The IZ parameter is set to δ = 0.13, which equals to the

difference between the expected profit return from systems 4 and 5, and thus the correct selection is

to choose system 5. We report the performance measures of PCS, ANS, and CPU running time per

replication (in seconds), based on 1,000 complete macro-replications for all procedures, in Table 9.

Similar to the previous numerical results, the observed PCS for all procedures exceeds the nominal

value of 0.95. Both AFS-SAA and AFS-SA require much smaller number of observations and

shorter CPU running time than KN , and AFS-SAA still performs better than AFS-SA.

11Interested readers may refer to the Appendix of Kim and Henderson (2007) for the detailed parameterizations.
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Table 9: Results for the proposed procedures applied to the equity investment problem in compar-
ison with KN in 1,000 trials with δ = 0.13 and 1− α = 0.95.

Procedure PCS ANS CPU (sec.)

KN 0.981 3,779 39.72
AFS-SAA 0.979 484 21.58
AFS-SA 0.991 936 26.24

6 Conclusions

In this paper, we develop adaptive fully sequential selection procedures with linear or nonlinear

CV estimation. In the proposed procedures, the control coefficient estimator β̂ for each surviving

system is updated sequentially as the sampling process progresses. We prove the statistical validity

of adaptive procedures with linear or nonlinear CV estimation in the asymptotic regime. We also

provide proofs for the SLLN and CLT of the SAA nonlinear CV estimator used in the adaptive

procedures, which is nontrivial and different from the existing literature. The experimental studies

reveal that the proposed procedures are superior to the ordinary fully sequential procedures (based

on sample means or CS estimators as in KN and T N procedures) in terms of reduced sampling

cost to achieve the required PCS level. The empirical results also indicate that the application

of SAA-based estimator delivers a more robust performance (compared to SA-based estimator)

when using the nonlinear CV estimation. The finite-time performance of the SA-based estimator is

strongly impacted by certain tuning parameters (e.g., the initial solution and step-size parameters)

and the selections of which are nontrivial. Overall, we find that it is unnecessary to very frequently

update β̂ in the adaptive procedures, and thus the computational overhead should not be increased

much beyond that of the non-adaptive CV-based procedures by Tsai and Nelson (2010).

There are several possible directions of future research. For instance, we can employ the adap-

tive linear or nonlinear CV scheme in R&S procedures for steady-state simulation with a single

replication (cf., Kim and Nelson (2006a)). Another possible extension is to consider combined

schemes of adaptive CV and importance sampling techniques (cf., Ahamed et al. (2006)) for use

in R&S procedures when estimating performance measures related to rare events. It is also worth-

while considering to apply the proposed adaptive procedures to solve large-scale R&S problems

for practical complicated Markovian systems, e.g., the treatment selection of the simulation-based

personal medicine care, and the network design of integrated supply chain management.
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Appendix

A Proofs of Theorems 1 and 2

In this section, we prove Theorems 1 and 2 which show the statistical validity of AFS procedure

as implementing the β̂ updating Algorithms 3 and 4. In order to achieve that, we first need to

properly scale the discrete-time process θ̄i(r)− θ̄h(r), which is used in the elimination step. Then,

the triangular region, constructed also for elimination, will also be scaled in the same limiting

regime. Based on that, we can prove the desired PCS guarantee. The proofing framework is quite

similar to the works of Luo et al. (2015) and Tsai et al. (2017), however, the detailed constructions

are substantially different.

Recall that, in AFS procedure, alternative i is eliminated if there exists some other surviving

alternative h such that

θ̄i(r)− θ̄h(r) < min

{
0,−a

δ
·
[
S2
i (r) + S2

h(r)
]

r
+
δ

2

}
, (9)

where θ̄i(r) and S2
i (r) are the sample mean and sample variance of alternative i defined in Equa-

tion (4), in which each observation θ̂ij is calculated as θ̂ij = Yij− (Cij − µi)
T β̂i,`−1, where β̂i,`−1 is

updated as β̂i,`−1 = S−1
Ci

(r)SCiYi(r) in the linear CV approach, and θ̂ij = Yij−f
(
Cij , β̂i,`−1

)
, where

β̂i,`−1 is one of the first-order critical points by solving arg min
βi

Var(βi, r) = arg min
βi

1
r−1

[∑r
j=1

(
θ̂ij
)2−

1
r

(∑r
j=1 θ̂ij

)2
]

in the SAA approach. Since the linear CV is a special case of nonlinear SAA ap-

proach, we would like to adopt the equation θ̂ij = Yij − f
(
Cij , β̂i,`−1

)
when they can be unified,

but present the results for them separately when the proofing techniques are quite different.

For notational simplicity, we introduce the β̂ updating sequence {r` : r0 = 0, r1 = n0 < r2 <

r3 < · · · }∞`=0 to be the counter points at which β̂i` will be updated. It is easy to see that r`−r`−1 = L

for all ` ≥ 2 as in AFS procedure.12 Then, the jth observation from system i, when j ∈ (r`−1, r`]

for some ` ≥ 1, is

θ̂ij = Yij − f
(
Cij , β̂i,`−1

)
(10)

Therefore, at stage t, t = 1, 2 . . ., with r total samples from system i, i.e., r ∈ (rt−1, rt], we know

that β̂i has been updated for (t−1) times and the sample-mean estimator θ̄i(r) =
∑r

j=1 θ̂ij is always

unbiased with mean E[θ̄i(r)] = θi under certain conditions. At the first stage t = 1, θ̂ij = Yij due

to that f
(
Cij , β̂i0

)
= 0, which are i.i.d. random variables with mean θi and variance σ2

i . At other

stages t ≥ 2, we summarize the result in the following lemma.

12Note that the β̂ updating sequence could be more flexible as long as it satisfies the necessary conditions in the
asymptotic regime.
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Lemma 1 (SLLN for θ̄i(r)). Suppose that all assumptions in Theorems 1 and 2 are satisfied. In

particular, we assume the initial value of β̂i0 such that f
(
Cij , β̂i0

)
= 0 for all system i = 1, 2, . . . , k

and the first-stage sample size n0 →∞ and n0
r → 0 as the sample size r →∞ in AFS procedure.

Suppose that β̂i1
a.s.−→ β∗i , for some fixed β∗i ∈ B. Then, as r →∞, θ̄i(r)

a.s.−→ θi.

Note that the condition that β̂i1
a.s.−→ β∗i , for some fixed β∗i ∈ B, can be satisfied under As-

sumption 4. Following the main steps in proving Theorem 5.2 in Kim and Henderson (2007), we

can prove the result in a similar way.

Proof. At any stage t ≥ 2 with sample size r > n0, the sample mean estimator

θ̄i(r) =
1

r

 n0∑
j=1

θ̂ij +
t−1∑
`=2

r∑̀
j=r`−1+1

θ̂ij +
r∑

j=rt−1+1

θ̂ij


=

1

r

 n0∑
j=1

Yij +
t−1∑
`=2

r∑̀
j=r`−1+1

(
Yij − f

(
Cij , β̂i,`−1

))
+

r∑
j=rt−1+1

(
Yij − f

(
Cij , β̂i,t−1

))
=

1

r

 r∑
j=1

Yij −
t−1∑
`=2

r∑̀
j=r`−1+1

f
(
Cij , β̂i,`−1

)
−

r∑
j=rt−1+1

f
(
Cij , β̂i,t−1

) .
Note that

∣∣θ̄i(r)− θi∣∣ ≤
∣∣∣∣∣∣1r

r∑
j=1

(Yij − θi)

∣∣∣∣∣∣+
1

r

∣∣∣∣∣∣
t−1∑
`=2

r∑̀
j=r`−1+1

f
(
Cij , β̂i,`−1

)
+

r∑
j=rt−1+1

f
(
Cij , β̂i,t−1

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣1r
r∑
j=1

(Yij − θi)

∣∣∣∣∣∣+
r − n0

r
× sup

β̂i∈B

∣∣∣∣∣∣ 1

r − n0

r∑
j=n0+1

f
(
Cij , β̂i

)∣∣∣∣∣∣ . (11)

The first term in Equation (11) converges to 0 as r → 0 by the conventional SLLN, and the

second term converges to 0 by the assumption n0
r → 0 and Proposition 5.1 in Kim and Henderson

(2007).

As an immediate result of Lemma 1, we have the SLLN for the sample variance estimator.

Lemma 2 (Convergence of the Sample Variance Estimator). Suppose that all assumptions in

Lemma 1 are satisfied. The updated sample variance estimator for system i is given in Equation (4).

Then, as r →∞, S2
i (r)

a.s.−→ ξ2
i , where ξ2

i = (1−R2
i )σ

2
i in the linear CV case and ξ2

i = v(β∗i ) in the

nonlinear SAA case.
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Proof. Note that

S2
i (r) =

1

r − 1

[ r∑
j=1

(
θ̂ij
)2 − 1

r

( r∑
j=1

θ̂ij

)2
]

=
1

r − 1

[ r1∑
j=1

(
θ̂ij
)2

+

r2∑
j=r1+1

(
θ̂ij
)2

+ · · ·+
r∑

j=rt−1+1

(
θ̂ij
)2

−1

r

( r1∑
j=1

θ̂ij +

r2∑
j=r1+1

θ̂ij + · · ·+
r∑

j=rt−1+1

θ̂ij

)2
]
. (12)

Notice that, by the SLLN in Lemma 1 and the Continuous Mapping Theorem, 1
r1

∑r1
j=1 θ̂ij =

1
n0

∑n0
j=1 Yij

a.s.−→ θi and 1
r1

∑r1
j=1

(
θ̂ij
)2

= 1
n0

∑n0
j=1 Y

2
ij

a.s.−→ θ2
i + σ2

i , as n0 →∞, where θi and σ2
i are

the true mean and true variance of Yij . Since that n0 → ∞, we know that β̂i,`−1
a.s.−→ β∗i for all

` ≥ 2. Then, for all j > n0, θ̂ij becomes i.i.d. with mean θi and variance ξ2
i , where ξ2

i = (1−R2
i )σ

2
i

in the linear case and ξ2
i = v(β∗i ) in the nonlinear SAA case, and

(
θ̂ij
)2

becomes i.i.d. with mean

θ2
i + ξ2

i . Then, by the Continuous Mapping Theorem again, S2
i (r) in Equation (12) can be further

written as

S2
i (r) =

1

r − 1

[
n0 ·

1

n0

n0∑
j=1

(
θ̂ij
)2

+
r∑

j=n0+1

(
θ̂ij
)2 − 1

r

(
n0 ·

1

n0

n0∑
j=1

θ̂ij +
r∑

j=n0+1

θ̂ij

)2
]

a.s.−→ 1

r − 1

[
n0(θ2

i + σ2
i ) + (r − n0)(θ2

i + ξ2
i )− 1

r

(
n0θi + (r − n0)θi

)2]
=

r

r − 1
ξ2
i +

n0

r − 1
(σ2
i − ξ2

i )

a.s.−→ ξ2
i ,

where the last equation is due to the fact n0
r → 0 as r →∞, which implies r

r−1 → 1 and n0
r−1 → 0.

Now, we are ready to introduce the scaled process. In fact, we are only interested in the

pairwise comparisons between the true best system and all others, i.e., systems 1 and h, h =

2, . . . , k. Therefore, we intend to establish the convergence to a Brownian motion process for

the statistics associated with θ̄1(r) − θ̄h(r). In order to do so, we need to define the maximum

number of samples taken from the pair of systems 1 and h to be N1h(δ) = d2a(ξ2
1 + ξ2

h)/δ2e, where

a = − log [2α/(k − 1)] and ξ2
i = (1 − R2

i )σ
2
i in the linear case or ξ2

i = v(β∗i ) in the nonlinear SAA

case. For notational simplification, we denote N1h(δ) by N , which is a function of the IZ parameter

δ. We then consider the asymptotic regime that δ → 0, which has been studied in Kim and Nelson

(2006a) and Luo et al. (2015).

Let ε = n0
N < 1, which is also a function of δ. Recall that n0 →∞ and δn0 → 0 as δ → 0. Then,

we have N → ∞ and ε → 0 as δ → 0. Let s be any number in [0, 1]. Then, the sample size r can
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be expressed as r = bsNc, where bxc denotes the largest integer that is smaller than or equal to x.

When s ∈ [ε, 1], we define the scaled statistics associated with θ̄1(r)− θ̄h(r) as follows,

Z1h(s) =
1√

ξ2
1 + ξ2

h

· r√
N

[
θ̄1(r)− θ̄h(r)

]
=

1√
ξ2

1 + ξ2
h

· 1√
N

[ bsNc∑
j=1

θ̂1j −
bsNc∑
j=1

θ̂hj

]
. (13)

The reason that we only consider the time interval [ε, 1] is due to the fact that the comparison is

conducted only when r ≥ n0, where the initial sample size n0 ≥ 2. However, for mathematical

completeness, we also define Z1h(s) = 0 when s ∈ [0, ε). Now we are ready to state the convergence

of the scaled process.

Lemma 3 (Convergence of the Scaled Process). Let D[0, 1] be the Skorohod space of all Càdlàg

(i.e., right continuous with left limits) functions on [0, 1], endowed with the Skorohod J1 topology.

Then, Z1h(·) defined by Equation (13) with h = 2, 3, . . . , k is an element of the Skorohod space

D[0, 1]. Suppose that the conditions in Theorems 1 and 2 are all satisfied. Then, in the slippage

configuration (i.e., θ2 = θ3 = · · · = θk = θ1 − δ), we have

Z1h (·)⇒ B∆(·), as δ → 0,

where B∆(s) = B(s) + ∆s is a standard Brownian motion process with a positive drift ∆ =
√

2a.

Proof. Recall the definition of Z1h(s) = 0 when s ∈ [0, ε), and that ε → 0 as δ → 0, which means

that Z1h(0) = B∆(0) = 0 and Z1h(·) is right-continuous at s = 0 for all δ. Then, in the following,

we only focus on the interval s ∈ [ε, 1].

Ignoring the normalized term 1√
ξ2
1+ξ2

h

in Equation (13), we start by investigating on the term

1√
N

bsNc∑
j=1

(
θ̂ij − θi

)
, where i = 1 or h. Plugging Equation (10), we then have

1√
N

bsNc∑
j=1

(
θ̂ij − θi

)
=

1√
N

bsNc∑
j=1

(
Yij − f

(
Cij , β̂i,`−1

)
− θi

)
,

=
1√
N

[
n0∑
j=1

(Yij − θi) +

bsNc∑
j=n0+1

(
Yij − f

(
Cij , β̂i,`−1

)
− θi

)]

=
1√
N

[
n0∑
j=1

f
(
Cij ,β

∗
i

)
+

n0∑
j=1

(
Yij − f

(
Cij ,β

∗
i

)
− θi

)
+

bsNc∑
j=n0+1

(
Yij − f

(
Cij ,β

∗
i

)
− θi

)
+

bsNc∑
j=n0+1

(
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

)) ]
. (14)
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Due to the fact that r1 = n0 and the assumption that n0 → ∞ as δ → 0, then we know that

β̂i,`−1
a.s.−→ β∗i for all ` ≥ 2.13 Recall that N = d2a(ξ2

1 + ξ2
h)/δ2e, which converges to ∞ as δ → 0.

Moreover, the assumption that δn0 → 0 as δ → 0 implies not only ε = n0
N → 0, but also n0√

N
→ 0.

By Proposition 5.1 in Kim and Henderson (2007) again, we know that 1
n0

n0∑
j=1

f
(
Cij ,β

∗
i

) a.s.−→ 0.

Then, as δ → 0, the first term in Equation (14)

1√
N

n0∑
j=1

f
(
Cij ,β

∗
i

)
=

n0√
N
· 1

n0

n0∑
j=1

f
(
Cij ,β

∗
i

) a.s.−→ 0.

For the last term in Equation (14), it suffices to show that

D =
1

r − n0

r∑
j=n0+1

(
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

))
⇒ 0.

By Chebyshev’s inequality, we know that, for any given ε > 0,

Pr {|D| ≥ ε} ≤ 1

(r − n0)ε2

r∑
j=n0+1

E
[
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

)]2
(15)

Note that,

[
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

)]2 ≤W 2(Cij)‖β∗i − β̂i,`−1‖2 (16)

The normed term in (16) is bounded, so the dominated convergence theorem (cf., Billingsley (1986))

implies that (15) converges to 0 as r →∞.

For the second and third term in Equation (14), they can be combined together, and {Yij −
f
(
Cij ,β

∗
i

)
−θi, j = 1, 2, . . .} are i.i.d. random variables with mean zero and variance ξ2

i = (1−R2
i )σ

2
i

or v(β∗i ). Then, by the Donsker’s Theorem (i.e., Theorem 4.3.2 in Whitt (2002)),

1√
N

[ bsNc∑
j=1

(
Yij − f

(
Cij ,β

∗
i

)
− θi

) ]
⇒ ξiB(i)(s),

where B(i)(·) is a standard Brownian motion process.

13We do not need the assumption of β̂i(r)
a.s.−→ β∗

i for a constant β∗
i under the linear CV approach. It should

be noticed that, by Theorem 3 in Nelson (1990), we know that β̂i(r1)
p→ β∗

i as δ → 0. There is a stronger result

β̂i(r)
a.s.−→ β∗

i as r →∞ (cf., Avramidis and Wilson (1993)). In fact, the convergence in probability result in Nelson
(1990) is sufficient for our proof.
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Then, we are ready to conclude this proof by showing that

Z1h(s) =
1√

ξ2
1 + ξ2

h

· 1√
N

bsNc∑
j=1

(
θ̂1j − θ1

)
−
bsNc∑
j=1

(
θ̂hj − θh

)+
1√

ξ2
1 + ξ2

h

· 1√
N

[
bsNc(θ1 − θh)

]
⇒ 1√

ξ2
1 + ξ2

h

·
[
ξ1B(1)(s) + ξhB(h)(s)

]
+ ∆s, where ∆ =

√
2a,

= B(s) + ∆s
D
= B∆(s),

where the last equation is due to the independence among B(1)(s) and B(h)(s), and the notation
D
=

means “equal in distribution”.

In Lemma 3, we construct the continuous-time stochastic process Z1h(s) by properly scaling the

original discrete-time stochastic process θ̄1(r)− θ̄h(r) by the term 1√
ξ2
1+ξ2

h

· r√
N

, in order to establish

the limiting Brownian motion process B∆(s). However, in order to show the asymptotic statistical

guarantee, it requires to scale not only the original statistics (i.e., the term in the left-hand-side

(LHS) of Inequality (9)), but also the continuation region for elimination (i.e., the term in the

right-hand-side (RHS) of Inequality (9)).

For the sake of presentational simplicity, we define the upper bound and lower bound as follows,

Γih(r) = max

{
0,
a

δ
·

[S2
i (r) + S2

h(r)]

r
− δ

2

}
and − Γih(r) = min

{
0,−a

δ
·

[S2
i (r) + S2

h(r)]

r
+
δ

2

}
,

which forms the symmetric continuation region Λih for the pair of systems i and h. Since we

are interested in the pair of systems 1 and h, where h = 2, 3, . . . , k, we next consider only the

continuation region Λ1h, for h = 2, 3, . . . , k.

To make the comparison condition also hold for Z1h(s), we scale the RHS in Inequality (9) by

the same term, which is done as follows. Define

Γδ1h(s) =
1√

ξ2
1 + ξ2

h

· r√
N
· Γ1h(r) = max

0,
a
[
S2

1(r) + S2
h(r)

]
δ
√
ξ2

1 + ξ2
h

√
N
− δr

2
√
ξ2

1 + ξ2
h

√
N

 . (17)

Then, the upper boundary Γδ1h(s) and lower boundary −Γδ1h(s) form the symmetric continuation

region Λδ1h for the scaled process Z1h(s). Notice that either system 1 or h is eliminated depends

on whether Z1h(·) exits the continuation region Λδ1h from above or below. As δ → 0, we expect

the scaled continuation region Λδ1h also converges to some limiting continuation region, which is

rigorously stated in the following lemma.

Lemma 4 (Convergence of the Triangular Region). Define the symmetric continuation region Λδ1h
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for Z1h(·) by the upper boundary Γδ1h(s) and lower boundary −Γδ1h(s) as in Equation (17). Suppose

that the conditions in Theorems 1 and 2 are all satisfied. Then, as δ → 0, we know that

Γδ1h(s)
a.s.−→Γ(s) = max

{
0,
a

∆
− ∆

2
· s
}
, for all s ∈ (0, 1],

where ∆ =
√

2a. Moreover, the asymptotic region Λ, formed by Γ(s) and −Γ(s), is a symmetric

triangular region for the Brownian motion process B∆(·) as obtained in Lemma 3.

Remark 5. The reason we exclude the case that s = 0 is simply because the sample variance esti-

mator S2
i (r) in Equation (17) is only defined when r ≥ n0, which implies s > 0. For mathematical

rigorousness, we may define S2
i (r) = 0 for r < n0, which then allows us to include the original

point s = 0.

Proof. Recall the definition of r and N , which are r = bsNc and N = d2a(ξ2
1 + ξ2

h)/δ2e, where

r ≥ n0 implies s > 0. It is easy to show that

a

δ
√
ξ2

1 + ξ2
h

√
N
→ a

∆(ξ2
1 + ξ2

h)
, and

δr

2
√
ξ2

1 + ξ2
h

√
N
→ ∆

2
· s,

as δ → 0. Then, the key step in proving Lemma 4 is to show the convergence of the sample variance

estimator S2
i (r)

a.s.−→ ξ2
i in Equation (17), which has been shown in Lemma 2.

Notice that Lemmas 3 and 4 have established the convergence results of the scaled stochastic

process Z1h(·) and the scaled continuation region Λδ1h. However, recall that elimination decisions

are only made at these stopping times when the stochastic processes first exit the continuation

regions, which indicates that we need to obtain a stronger result to ensure the convergence at these

stopping times in order to bound the probability of incorrect selection.

Lemma 5 (Convergence at the Stopping Time). Define T δ1h = inf
{
s : |Z1h (s)| ≥ Γδ1h(s)

}
as the

stopping time when Z1h(·) first exits the continuation region Λδ1h and define T1h = inf {s : |B∆ (s)| ≥ Γ(s)}
as the stopping time when B∆(·) first exits the triangular region Λ. Suppose that the conditions in

Theorems 1 and 2 are all satisfied. Then, as δ → 0, we have

Z1h(T δ1h)⇒ B∆(T1h).

Remark 6. We omit the proof of Lemma 5, because it follows exactly the same steps as that in

proving Proposition 3.2 of Kim et al. (2005), Lemma 2 in Luo et al. (2015) and Lemma 3 in Tsai

et al. (2017).
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We also need the lemma of Fabian (1974) on the probability of B∆(·) exiting the triangular

continuation region Λ.

Lemma 6 (Fabian’s Bound at the Stopping Time). For any fixed triangular continuation region,

which is formed by the upper boundary U(s) = max {0, A−Bs} and the lower boundary −U(s), if

B = ∆/2 where ∆ > 0, then

Pr {B∆(T ) < 0} =
1

2
e−A∆,

where B∆(·) is the standard Brownian motion process with the positive drift term ∆, and T =

inf{s : |B∆ (s)| ≥ U(s)} is the random stopping time that B∆(·) first exits the continuation region.

We are now ready to prove Theorems 1 and 2.

Proof. Recall our objective is to show that the limiting PCS level (i.e., the probability of selecting

system 1) satisfies that

lim inf
δ→0

Pr {select system 1} ≥ 1− α. (18)

By Bonferroni inequality (cf., Kim and Nelson (2006b)), the LHS of Equation (18) can be relaxed

as follows,

lim inf
δ→0

Pr {select system 1} = lim inf
δ→0

[
1− Pr

{
k⋃

h=2

{system h eliminates 1}

}]

≥ 1− lim sup
δ→0

k∑
h=2

Pr {system h eliminates 1} , (19)

which allows us to deal with the term lim supδ→0 Pr {system h eliminates 1}, i.e., the limiting

probability of incorrect selection that system 1 is eliminated by system h, where h = 2, 3, . . . , k.

We begin with the slippage configuration where θ1 − δ = θ2 = · · · = θk. Notice that the

lim sup
δ→0

Pr {system h eliminates 1} = lim sup
δ→0

Pr
{
Z1h

(
T δ1h

)
≤ 0
}

(20)

= Pr {B∆ (T1h) ≤ 0} (21)

=
1

2
e−

a
∆

∆ (22)

=
α

k − 1
, (23)

where Equation (20) holds because of the fact that Z1h(·) exits the continuation region through the

lower boundary, Equation (21) follows from Lemma 5, Equation (22) follows from Lemma 6, and
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Equation (23) holds because of the definition of a and ∆. Plugging (23) into (19), we achieve our

objective by obtaining that

lim inf
δ→0

Pr {select system 1} ≥ 1−
k∑

h=2

α

k − 1
= 1− α.

We next deal with the general cases under the IZ formulation, i.e., θ1 − δ ≥ θ2 ≥ · · · ≥ θk.

In that situation, the convergence of the scaled stochastic process Z1h(·) to the Brownian motion

process B∆(·) is no longer true. However, we can define a new type of scaled process

Ẑ1h(s) =
1√

ξ2
1 + ξ2

h

· r√
N

[ (
θ̄1(r)− θ̄h(r)

)
− (θ1 − θh − δ)

]
.

By Lemma 3, we know that Ẑ1h (·) ⇒ B∆(·) as δ → 0. Moreover, because of the IZ assumption

that θ1 − δ ≥ θh, for all h = 2, 3, . . . , k, we have that

Ẑ1h (s) = Z1h (s)− 1√
ξ2

1 + ξ2
h

· r√
N

(θ1 − θh − δ) ≤ Z1h (s) . (24)

Define T̂ δ1h as the stopping time at which Ẑ1h(·) first exits the continuation region Λδ1h, i.e.,

T̂ δ1h = inf
{
s :
∣∣∣Ẑ1h (s)

∣∣∣ ≥ Γδ1h(s)
}
.

Then, using the result in Inequality (24), we can bound the limiting probability of incorrect

selection between systems 1 and h as follows,

lim sup
δ→0

Pr {system h eliminates 1} = lim sup
δ→0

Pr
{
Z1h

(
T δ1h

)
≤ 0
}

≤ lim sup
δ→0

Pr
{
Ẑ1h

(
T̂ δ1h

)
≤ 0
}

= Pr {B∆ (T1h) ≤ 0}

=
α

k − 1
. (25)

Again, plugging (25) into (19), we conclude the proof.

Remark 7. (a) It is interesting to point out that the scaled continuation region Γδ1h(·) is the

same for both the slippage configuration and general IZ cases, which allows us to define the

stopping times T δ1h or T̂ δ1h for either Z1h(·) or Ẑ1h (·) using the same continuation region.

(b) It is also worthwhile noticing that, as Z1h(·) exits the continuation region Γδ1h(·) through the
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lower boundary at time T δ1h, i.e., Z1h

(
T δ1h
)
≤ 0, Inequality (24) implies that Ẑ1h (·) must have

already exited the same continuation region Γδ1h(·) through the lower boundary at an earlier

time T̂ δ1h, i.e., Ẑ1h

(
T̂ δ1h

)
≤ 0, with T̂ δ1h < T δ1h.

B Proofs of Propositions 3 and 4

In this section, we provide the CLT of θ̄i(r) under two different types of assumptions. The first type

of assumption has the same setting as Theorem 2, where δ → 0 implies that n0 → ∞. We state

the result in Proposition 3. The second type of assumption is the sequence dependent assumption,

i.e., assuming that the sequence
{
θ̂ij , j ∈ Z+

}
is strictly stationary. Under the sequence dependent

assumption, we do not need n0 goes to infinity. We state the result in Proposition 4.

Proposition 3. Suppose that Assumptions 1–4 hold. Let the first-stage sample size n0 = n0(δ) be

a function of δ, satisfying that n0(δ) ≥ 2 and that n0 → ∞ and δn0 → 0 as δ → 0. Let the total

sample size r = r(δ) also be a function of δ, satisfying that r > n0 and δ2r → c where c > 0 is

a positive constant. Then the SAA-based nonlinear CV estimator θ̄i(r) in Equation (4), satisfies

that, as δ → 0, √
r
(
θ̄i(r)− θi

)
ξi

⇒ N(0, 1),

where ξ2
i = v(β∗i ).

The proof of Proposition 3 is quite similar to the proof of the convergence to a Brownian motion

process in Lemma 3.

Proof. At any stage t ≥ 2 with r > n0, we know that

1√
r

r∑
j=1

(
θ̂ij − θi

)
=

1√
r

 n0∑
j=1

(
θ̂ij − θi

)
+

t−1∑
`=2

r∑̀
j=r`−1+1

(
θ̂ij − θi

)
+

r∑
j=rt−1+1

(
θ̂ij − θi

)
=

1√
r

[
n0∑
j=1

(Yij − θi) +

r∑
j=n0+1

(
Yij − f

(
Cij , β̂i,`−1

)
− θi

)]

=
1√
r

[
n0∑
j=1

f
(
Cij ,β

∗
i

)
+

n0∑
j=1

(
Yij − f

(
Cij ,β

∗
i

)
− θi

)
+

r∑
j=n0+1

(
Yij − f

(
Cij ,β

∗
i

)
− θi

)
+

r∑
j=n0+1

(
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

))]
. (26)
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Due to the fact that r1 = n0 and the assumption that n0 → ∞ as δ → 0, then we know that

β̂i,`−1
a.s.−→ β∗i for all ` ≥ 2. By Proposition 5.1 in Kim and Henderson (2007) again, we know that

1
n0

n0∑
j=1

f
(
Cij ,β

∗
i

) a.s.−→ 0. Recall that δn0 → 0 and δ2r → c. Then, as δ → 0, the first term in

Equation (26)

1√
r

n0∑
j=1

f
(
Cij ,β

∗
i

)
=

n0√
r
· 1

n0

n0∑
j=1

f
(
Cij ,β

∗
i

) a.s.−→ 0.

For the last term in Equation (26), it suffices to show that

D =
1

r − n0

r∑
j=n0+1

(
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

))
⇒ 0.

By Chebyshev’s inequality, we know that, for any given ε > 0,

Pr {|D| ≥ ε} ≤ 1

(r − n0)ε2

r∑
j=n0+1

E
[
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

)]2
(27)

Note that,

[
f
(
Cij ,β

∗
i

)
− f

(
Cij , β̂i,`−1

)]2 ≤W 2(Cij)‖β∗i − β̂i,`−1‖2 (28)

The normed term in (28) is bounded, so the dominated convergence theorem (cf., Billingsley (1986))

implies that (27) converges to 0 as r →∞.

For the second and third term in Equation (26), they can be combined together, and {Yij −
f
(
Cij ,β

∗
i

)
− θi, j = 1, 2, . . .} are i.i.d. random variables with mean zero and variance ξ2

i = v(β∗i ).

Then, by conventional CLT,

1√
r

[
r∑
j=1

(
Yij − f

(
Cij ,β

∗
i

)
− θi

) ]
⇒ ξiN(0, 1).

Therefore, Proposition 3 has been proved.

In the proof above, when n0 → ∞, β̂i,`−1 → β̂
∗
i , so the CV estimators in the following stages

become independent. If we do not let n0 →∞, we need to know further dependent property of the

sequence
{
θ̂ij , j ∈ Z+

}
. To provide another type of CLT, we need to define a big-O notation: for

a real valued function g, if there exists a positive real number M and a real number r0 such that

|g(r)| ≤Mr for all r ≥ r0, we then write g(r) = O(r).
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Proposition 4. Suppose that Assumptions 1–4 hold. For any system i,
{
θ̂ij , j ∈ Z+

}
is assumed

to be a strictly stationary random variable sequence such that E
[
(
∑r

j=1(θ̂ij − θi))2
]

= O(r), and

0 < E[θ̂2
i1] <∞. Then the SAA-based nonlinear CV estimator θ̄i(r) in Equation (4) satisfies that,

as r →∞,

(i) θ̄i(r)
a.s.−→ θi.

(ii)
r
(
θ̄i(r)− θi

)
σir

⇒ N(0, 1), (29)

where σ2
ir = r2Var

[
θ̄i(r)

]
→∞.

Remark 8. Equation (29) is not a classical expression of CLT. The assumption that E[(
∑r

j=1(θ̂ij−
θi))

2] = O(r) implicates the growth of σ2
ir. Notice that σ2

ir = r2Var
[
θ̄i(r)

]
= Var[

∑r
j=1 θ̂ij ], which

can be shown to converge to infinity as r → ∞, so both the numerator and the denominator go to

infinity as r →∞. But if this variance can be expressed by Var[
∑r

j=1 θ̂ij ] = rξ̃2
i (i.e., θ̂ij , j = 1, 2, . . .

are mutually independent, and its variance is ξ̃2
i ), then the result in Equation (29) can be written

as
√
r(θ̄i(r)− θi)/ξ̃i ⇒ N(0, 1), which is reduced to the classical CLT.

In the following, we first prove Proposition 4 (i), and then introduce several existing results to

build the proof of Proposition 4 (ii).

Proof of Proposition 4 (i). We first prove the convergence of β̂i(r). By Assumption 2, f(Cij ,βi) is

continuous at βi a.s., and by Assumption 1, E[Y 2
ij ] <∞ and E[f2(Cij ,βi)] <∞ for all βi ∈ U , so

we know that E[(Yij −f(Cij ,βi))
2] <∞. It implies that E[supβi∈B(δB ,β

∗
i )

(Yij −f(Cij ,βi))
2] <∞,

so we have {(Yij − f(Cij ,βi))
2,βi ∈ B(δB,β

∗
i )} is uniformly integrable. By Proposition 8.5 of Kim

et al. (2015), Var(βi, r) converges to Var [Yij − f(Cij ,βi)] uniformly. Then by Theorem 8.2 of Kim

et al. (2015), the first-order critical point β̂i(r) for the minimization of Var(βi, r) converges (a.s.)

to the first-order critical point β∗i for the minimization of Var [Yij − f(Cij ,βi)]. Notice that when

r →∞, `→∞, then by the definition of β̂i`, we have that β̂i`
a.s.−→ β∗i .

Recall that the nonlinear CV estimator (used in AFS-SAA) is θ̄i(r) = 1/r
∑r

j=1 θ̂ij , with

θ̂ij = Yij − f
(
Cij , β̂i`

)
, where ` = max {0, d(j − n0)/Le}. Notice that

∣∣θ̄i(r)− θi∣∣ ≤
∣∣∣∣∣∣1r

r∑
j=1

(Yij − θi)

∣∣∣∣∣∣+

∣∣∣∣∣∣1r
r∑
j=1

f
(
Cij , β̂i`

)∣∣∣∣∣∣ . (30)

The first term in Equation (30) converges to 0 as r →∞ by the conventional SLLN.

Consider the second term in Equation (30). Notice that the β̂i` depends on the previous samples,

so we denote this dependence as β̂i`(j), which β̂i`(j)
a.s.−→ β∗i , so there exists a set E1 ∈ F (F is the
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σ-field of the probability space) with Pr{E1} = 0 such that ∀ω ∈ Ec1 and ∀ε > 0, ∃r1 ∈ Z+ such

that ∀r > r1, ∣∣∣β̂i`(j) − β∗i

∣∣∣ < ε. (31)

By the Taylor expansion, we have

f
(
Cij , β̂i`(j)

)
= f (Cij ,β

∗
i ) +∇βf

(
Cij , β̃i`(j)

)> (
β̂i`(j) − β∗i

)
,

where β̃i`(j) is in the line of β∗i and β̂i`(j).

Then,∣∣∣∣∣∣1r
r∑
j=1

f
(
Cij , β̂i`(j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣1r
r1∑
j=1

f
(
Cij , β̂i`(j)

)
+

1

r

r∑
j=r1+1

f
(
Cij , β̂i`(j)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣1r
r1∑
j=1

f
(
Cij , β̂i`(j)

)
+

1

r

r∑
j=r1+1

{
f (Cij ,β

∗
i ) +∇βf

(
Cij , β̃i`(j)

)> (
β̂i`(j) − β∗i

)}∣∣∣∣∣∣
≤

∣∣∣∣∣∣1r
r1∑
j=1

f
(
Cij , β̂i`(j)

)∣∣∣∣∣∣+

∣∣∣∣∣∣1r
r∑

j=r1+1

f (Cij ,β
∗
i )

∣∣∣∣∣∣+
1

r

r∑
j=r1+1

∣∣∣∇βf
(
Cij , β̃i`(j)

)∣∣∣ ∣∣∣β̂i`(j) − β∗i

∣∣∣(32)

The first term of inequality (32) goes to zero as r → ∞. The second term goes to zero by the

SLLN. By assumption supβi∈U |∂f (c,βi) /∂ (βi)d| ≤W (c), then third term has

1

r

r∑
j=r1+1

∣∣∣∇βf
(
Cij , β̃i`(j)

)∣∣∣ ∣∣∣β̂i`(j) − β∗i

∣∣∣ < p

r

r∑
j=r1+1

W (Cij)
∣∣∣β̂i`(j) − β∗i

∣∣∣ .
By Assumption 3, E

[
(W (Cij))

2
]
< ∞, then by SLLN, 1

r

∑r
j=1W (Cij)

a.s.−→ E[W (Cij)] , wi > 0.

That is, there exists another set E2 ∈ F with Pr{E2} = 0 such that ∀ω ∈ Ec2 and ∀ε > 0, ∃r2 ∈ Z+

such that ∀r > r2, ∣∣∣∣∣∣1r
r∑
j=1

W (Cij)− wi

∣∣∣∣∣∣ < ε.

51



Combine above inequality with (31),

ε2 >

∣∣∣∣∣∣1r
r∑
j=1

W (Cij)− wi

∣∣∣∣∣∣
∣∣∣β̂i`(j) − β∗i

∣∣∣
≥ 1

r

r∑
j=1

W (Cij)
∣∣∣β̂i`(j) − β∗i

∣∣∣− wi ∣∣∣β̂i`(j) − β∗i

∣∣∣
>

1

r

r∑
j=1

W (Cij)
∣∣∣β̂i`(j) − β∗i

∣∣∣− wiε,
which implies that

1

r

r∑
j=r1+1

W (Cij)
∣∣∣β̂i`(j) − β∗i

∣∣∣ a.s.−→ 0.

So
1

r

r∑
j=r1+1

∣∣∣∇βf
(
Cij , β̃i`(j)

)∣∣∣ ∣∣∣β̂i`(j) − β∗i

∣∣∣ a.s.−→ 0.

Then, ∣∣∣∣∣∣1r
r∑
j=1

f
(
Cij , β̂i`(j)

)∣∣∣∣∣∣ a.s.−→ 0.

To prove the CLT of the nonlinear CV estimator θ̄i(r), we need the results in Bradley (1992),

in which we first define some new notation. Let A and B be two σ-field in our probability space,

and define the maximal correlation,

ρ(A ,B) := sup
V,W

{
|E[VW ]− E[V ]E[W ]|√

Var[V ]Var[W ]

}
,

where the supremum is taken over all square-integrable random variables V and W which are

A -measurable and B-measurable, respectively.

Define θ̂ :=
{
θ̂j , j ∈ Z+

}
, which is assumed to be a centered and strictly stationary random

variable sequence. Let S ⊂ Z+ and D ⊂ Z+ be any two nonempty disjoint sets, and we use the

abbreviation

ρ(S,D) := ρ
(
σ
({
θ̂ι, ι ∈ S

})
, σ
({
θ̂τ , τ ∈ D

}))
,

where σ(·) denotes the σ-field generated by (·). For each real number r ≥ 1, define

ρ∗(r) := sup
S,D

ρ(S,D),
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where the supremum is taken over all pairs of nonempty disjoint subsets S,D ⊂ Z+ such that

dist(S,D) ≥ r with dist(S,D) := minι∈S,τ∈D |τ − ι|.

Lemma 7 (Theorem 4 in Bradley (1992)). Suppose that θ̂ :=
{
θ̂j , j ∈ Z+

}
is a centered and

strictly stationary random variable sequence such that 0 < E[θ̂2
1] < ∞, ρ∗(r) → 0 as r → ∞,

and the continuous spectral density g(·) of θ̂ satisfies g(1) > 0. Then, as r → ∞, we have σ2
r :=

Var
[
θ̂1 + θ̂2 + · · ·+ θ̂r

]
→∞ and that

∑r
j=1 θ̂j

σr
⇒ N(0, 1).

In order to apply the result in Lemma 7, we need to establish another important result. Define

Corr(V,W ) to be the correlation between two random variables V and W , and we would like to

show that the controlled observations
{
θ̂ij , j ∈ Z+

}
satisfy that Corr(θ̂ij , θ̂i,j+r) → 0 as r → ∞.

That is, θ̂ij and θ̂i,j+r become essentially independent as r becomes large.

Lemma 8. Under Assumptions 1–4, if for any fixed i and all j, 0 < Var[θ̂ij ] < ∞. Then, for the

controlled observations
{
θ̂ij , j ∈ Z+

}
, we know that Corr(θ̂ij , θ̂i,j+r)→ 0 as r →∞.

Proof. Without loss of generality, we assume that θ̂ij and θ̂i,j+r belong to different stages (saying,

`1 and `2, where `1 < `2). Then, we can write the covariance of θ̂ij and θ̂i,j+r as

Cov
[
θ̂ij , θ̂i,j+r

]
= Cov

[
Yij − f

(
Cij , β̂i`1

)
, Yi,j+r − f

(
Ci,j+r, β̂i`2

)]
= Cov

[
f
(
Cij , β̂i`1

)
, f
(
Ci,j+r, β̂i`2

)]
− Cov

[
Yij , f

(
Ci,j+r, β̂i`2

)]
(33)

= E
[
f
(
Cij , β̂i`1

)
f
(
Ci,j+r, β̂i`2

)]
− E

[
Yijf

(
Ci,j+r, β̂i`2

)]
, (34)

where `1 = max
{

0, d j−n0

L e
}

, and `2 = max
{

0, d j+r−n0

L e
}

.

We can see that Equation (33) holds since Cov
[
Yij , Yi,j+r

]
= Cov

[
f
(
Cij , β̂i`1

)
, Yi,j+r

]
= 0. The

other covariance terms remain due to the correlation introduced by overlapping samples. Equation

(34) holds because E[f(·, ·)] = 0 under Assumption 1. In addition, there are countless possible

forms of the nonlinear function f(Cij , β̂i), therefore we use Taylor approximation to proceed the

derivation. Under appropriate differentiability assumptions (i.e., Assumptions 2 and 3), the first-

order Taylor expansion of f
(
Cij , β̂i

)
centered at β̂i = β∗i is as follows,

f
(
Cij , β̂i

)
= f (Cij ,β

∗
i ) +∇βf

(
Cij , β̃

∗
i

)T
(β̂i − β∗i )

where β̃∗i is located between β̂i and β∗i and the operator ∇βf (Cij ,βi) is taken derivative with

respect to the second component βi in the function f(·, ·).
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Then, based on Equation (34) we can rewrite

Cov
[
θ̂ij , θ̂i,j+r

]
= E

[[
f (Cij ,β

∗
i ) +∇βf

(
Cij , β̃

∗
i

)T
(β̂i`1 − β∗i )

]
×
[
f (Ci,j+r,β

∗
i ) +∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

] ]
−E

[
Yij

[
f (Ci,j+r,β

∗
i ) +∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]]
(35)

= E

[
∇βf

(
Cij , β̃

∗
i

)T
(β̂i`1 − β∗i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
+E

[
f (Cij ,β

∗
i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
−E

[
Yij∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
. (36)

Equation (35) follows from the application of Taylor approximation, where β̃∗i is located between

β̂i`1 and β∗i , and β̆∗i is located between β̂i`2 and β∗i . Since that Ci,j+r is independent of β̂i`1 , Ci,j+r

is independent of β̃∗i , and Yij is independent of Ci,j+r, we simplify Equation (35) to Equation (36)

by Assumption 1 to zero out the expectation of the nonlinear function.

Next, consider the first term on the RHS of Equation (36). By Assumption 2, B ⊂ Rp is

compact, so ‖βi − β′i‖ ≤ K, ∀βi,β′i ∈ B, for a large enough constant K <∞. On the other hand,

by Assumption 3, supβi∈U |∂f(c,βi)/∂ (βi)d| ≤W (c), then we have∣∣∣∣∇βf
(
Cij , β̃

∗
i

)T
(β̂i`1 − β∗i )

∣∣∣∣ ≤ pKW (Cij)

and ∣∣∣∣∇βf
(
Cij , β̆

∗
i

)T
(β̂i`2 − β∗i )

∣∣∣∣ ≤ pKW (Cij).

By the condition E
[

(W (Cij))
2 ] <∞ and the dominated convergence theorem, then the limit and

the expectation can be interchanged. That is, as r →∞ we obtain that

lim
r→∞

E

[
∇βf

(
Cij , β̃

∗
i

)T
(β̂i`1 − β∗i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
= E

[
lim
r→∞

∇βf
(
Cij , β̃

∗
i

)T
(β̂i`1 − β∗i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
= 0.

The last equality holds because `2 →∞ and β̂i`2 → β∗i as r →∞.

54



We now consider the second term on the RHS of Equation (36). Notice that∣∣∣∣f (Cij ,β
∗
i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

∣∣∣∣ ≤ pK |f (Cij ,β
∗
i )|W (Ci,j+r).

By Cauchy-Schwarz Inequality and Assumption 1,

(E [|f (Cij ,β
∗
i )|W (Ci,j+r)])

2 ≤ E
[
(f (Cij ,β

∗
i ))

2
]

E
[
(W (Ci,j+r))

2
]
<∞.

Then, by the dominated convergence theorem again, we know that

lim
r→∞

E

[
f (Cij ,β

∗
i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
= E

[
lim
r→∞

f (Cij ,β
∗
i )∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
= 0.

Similarly, we consider the third term on the RHS of Equation (36). Notice that∣∣∣∣Yij∇βf
(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

∣∣∣∣ ≤ |Yij |
∣∣∣∣∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

∣∣∣∣
≤ pK |Yij |W (Ci,j+r).

By Cauchy-Schwarz Inequality and Assumption 1 again,

(E [|Yij |W (Ci,j+r)])
2 ≤ E

[
Y 2
ij

]
E
[
(W (Ci,j+r))

2
]
<∞.

Then, by the dominated convergence theorem again,

lim
r→∞

E

[
Yij∇βf

(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
= E

[
lim
r→∞

Yij∇βf
(
Ci,j+r, β̆

∗
i

)T
(β̂i`2 − β∗i )

]
= 0.

Finally, we can conclude that Cov[θ̂ij , θ̂i,j+r] → 0 as r → ∞. Since 0 < Var[θ̂ij ] < ∞ for any

fixed i and all j, then we have Corr(θ̂ij , θ̂i,j+r)→ 0 as r →∞.

Now, we are ready to prove the CLT result in Proposition 4 based on Lemmas 7 and 8.

Proof of Proposition 4 (ii). Define θ̃ij := θ̂ij − θi and θ̃i :=
{
θ̃ij , j ∈ Z+

}
. As

{
θ̂ij , j ∈ Z+

}
is

a strictly stationary random variable sequence, θ̃i is a centered and strictly stationary random

55



variable sequence. According to Lemma 7, it suffices to verify the conditions ρ∗(r)→ 0 as r →∞
and g(1) > 0.

We first consider ρ∗(r). For ease of notation, we drop off the subscript i, and consider each

alternative independently. According to Lemma 8, we know that ∀j, Corr(θ̃j , θ̃j+r)→ 0 as r →∞.

So ∀ε > 0, there exists a r0 such that Corr(θ̃j , θ̃j+r) < ε for r > r0.

By the definition, ρ∗(r) = sup ρ(S,D), where ρ(S,D) = ρ(σ(θ̃k, k ∈ S), σ(θ̃k, k ∈ D)), and

dist(S,D) = minι∈S,τ∈D |ι − τ |. Now for ∀S,D ⊂ Z+, if dist(S,D) = r > r0, then ∀ι ∈ S and

∀τ ∈ D, |ι− τ | > r0. Thus, Corr(θ̃ι, θ̃τ ) < ε. That is, when dist(S,D) = r > r0, ρ(S,D) < ε. Then

ρ∗(r) = sup ρ(S,D) < ε. Since ε > 0 is arbitrary, ρ∗(r)→ 0 as r →∞.

Next, we consider the spectral density g(1). According to the definition of the spectral density,

g(eıλ) = lim
r→∞

gr(e
ıλ) = lim

r→∞

1

r
E

∣∣∣∣∣
r∑

k=1

e−ıkλθ̃ik

∣∣∣∣∣
2
 .

Then let λ = 0, we have

g(1) = lim
r→∞

1

r
E

∣∣∣∣∣
r∑

k=1

θ̃ik

∣∣∣∣∣
2
 .

By the condition that E[(
∑r

i=1(θ̂ij − θi))2] = O(r), i.e., E[(
∑r

k=1 θ̃ik)
2] = O(r), and it implies that

g(1) 6= 0, i.e., g(1) > 0.

With all the conditions in Lemma 7 being verified and adding back the subscript i, we have

r∑
j=1

θ̃ij/σir ⇒ N(0, 1),

where σ2
ir = r2Var

[
θ̄i(r)

]
and

∑r
j=1 θ̃ij = r(θ̄i(r) − θi). Therefore, Proposition 4 (ii) has been

proved.

C Two Existing Fully Sequential Selection Procedures

In this section, we present the classical fully sequential selection procedure, i.e., KN procedure in

Kim and Nelson (2001), as well as the fully sequential selection procedure with linear CV, i.e., T N
procedure in Tsai and Nelson (2010).

We assume that CRN is not used in both procedures, and that the linear CV model holds in

T N . In addition, an independent preliminary stage is used in T N to estimate β̂i, and then its

value is fixed in the subsequent elimination process. In this way, all the controlled observations

for constructing the CS estimator are i.i.d. as conditioned on β̂i. By doing so, we can guarantee
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a finite-time statistical validity for T N . For both procedures, we can show that, under the IZ

formulation, Pr{select system 1|θ1 ≥ θ2 + δ} ≥ 1 − α. Below are the detailed descriptions of two

procedures.

Procedure 2 (KN Procedure in Kim and Nelson (2001)).

Step 0. Setup: Select confidence level 1/k < 1 − α < 1, IZ parameter δ > 0, and the first-stage

sample size n0 ≥ 2. Let g2 = 2η × (n0 − 1), where

η =
1

2

{[
2
(

1− (1− α)
1

k−1

)]−2/(n0−1)
− 1

}
.

Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. For each

system i ∈ I, perform independent sampling to generate {Yij , j = 1, 2, . . . , n0} and compute

the sample variance

S2
i =

1

n0 − 1

n0∑
j=1

(Yij − Ȳi(n0))2.

Let r be the observation counter. Set r = n0.

Step 2. Elimination: Set Iold = I. Let

I = Iold \
{
i ∈ Iold : Ȳi(r)− Ȳh(r) < min

{
0,−Wih(r) +

δ

2

}
for some h ∈ Iold and h 6= i

}
,

where

Wih(r) =
g2 · [S2

i + S2
h]

2δr

and A \B = {x : x ∈ A and x /∈ B}.

Step 3. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise, take one additional output Yi,r+1 from each system i ∈ I, set r = r + 1 and

go to Step 2.

Procedure 3 (T N Procedure in Tsai and Nelson (2010)).

Step 0. Setup: Select confidence level 1/k < 1 − α < 1, IZ parameter δ > 0, preliminary-stage

sample size m0> max
i=1,...,k

qi + 2, and first-stage sample size n0 ≥ 2. Let g2 = 2η × (n0 − 1),

where

η =
1

2

{[
2
(

1− (1− α)
1

k−1

)]−2/(n0−1)
− 1

}
.
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Step 1. Initialization: Let I = {1, 2, . . . , k} be the set of systems still in contention. For each

system i ∈ I, generate {(Yij ,Cij) , j = 1, 2, . . . ,m0} and then compute the estimator β̂i(m0)

according to Equation (2). For each system i ∈ I, perform additional independent sampling

to generate {(Yij ,Cij) , j = m0 +1,m0 +2, . . . ,m0 +n0} and compute S2
i [m0, n0] (see Section

2.1). Let r be the observation counter. Set r = n0.

Step 2. Elimination: Calculate the sample mean of the first r observations (which starts after

the preliminary stage) from system i

θ̂i(r) = Ȳi(r)−
(
C̄i(r)− µi

)T
β̂i(m0).

Set Iold = I. Let

I = Iold \
{
i ∈ Iold : θ̂i(r)− θ̂h(r) < min

{
0,−Wih(r) +

δ

2

}
for some h ∈ Iold and h 6= i

}
,

where

Wih(r) =
g2 · [S2

i [m0, n0] + S2
h [m0, n0]]

2δr

and A \B = {x : x ∈ A and x /∈ B}.

Step 3. Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the

best. Otherwise, let r = r + 1, take one additional observation from system i ∈ I, and go to

Step 2.
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