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Purpose — The main purpose of this study is to enunciate the underlying factors that enhance the performance Accepted 29 December 2021
of scaled momentum strategies.
Design/methodology/approach — In previous studies, the negative relationship between the lagged
volatility and future return of momentum strategy is exploited to manage the risk. But this negative
relationship only holds when volatility is higher, further the volatility is shown to be persistent. The implication
of these two characteristics is important and this paper highlights that.
Findings — The higher performance of the scaled momentum strategies for the US market is linked with the
length of the investment horizon. The traditional asset pricing models fail to explain this relationship. However,
the authors find that the excess variance loaded on the long side of these strategies is one important explanation
of this horizon bound performance of these strategies.
Practical implications — This study highlights that the volatility scaled momentum strategy has higher
gains as the investment horizon increases. Therefore, it is an advisable investment strategy for the pension
fund industry.
Originality/value — Momentum strategy is unique as it fulfils two criteria of performance enhancement
through volatility scaling, such as, the persistent in volatility and its negative relationship with the returns.
However, the impact on the performance of the negative relationship between volatility and return that only
exist in highest volatility related states is not discussed. The authors have shown that this aspect of volatility
and return relationship of the momentum strategy has an important bearing on the performance of the
volatility scaled momentum strategies.
Highlights of the Paper

(1) This study finds that the Sharpe ratios and the alphas of the volatility scaled strategies increase as the
investment horizon increases.

(2) This is because the volatility series are highly persistent and the negative predictive relationship
between the volatility and future momentum returns only exist when the volatility is higher. The
impact of these two characteristics of the volatility series on the performance of the scaled momentum
strategies is not discussed in the literature.

(3) We find that the scaled strategies invest more/less when the volatility of the momentum strategy is
lower/higher. By investing less when volatility is higher, the scaled strategies avoid momentum
crashes and lessens the contribution of the variance from the short side in the overall variance of these
strategies.

We compare the performance of traditional momentum strategy with volatility scaled momentum
strategies over the different investment horizons. We find that the better performance of the volatility
scaled strategies is monotonically linked with the length of investment horizon. This connectivity
between performance and investment horizon is due to two aspects of the volatility series. First, the
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persistence in volatility (i.e. the higher volatility related states are followed by higher volatility and vice China Finance Review
versa) and second, the negative predictive relationship between volatility and the future momentum Vo, bernational
returns only exist when volatility of momentum strategy is higher. We also find that the higher > pp(_"51’9,539

performance of scaled momentum strategies is linked with the excess variance loaded on the winner ~ © Emerald Publishing Limied

portfolio of these strategies. DOI 10.1108/CFRI-06-2021-0103


https://doi.org/10.1108/CFRI-06-2021-0103

CFRI
12,3

520

(4) TItis further shown that the higher performance of the volatility scaled strategies, at each investment
related horizon can be explained by the higher variance loaded on the long side of such strategies in
comparison to the traditional momentum strategy.

Keywords Performance, Scaled momentum strategies, Volatility, Investment horizon, Persistence
Paper type Research paper

1. Introduction

The positive returns from momentum strategy have shown resilience over time for different
asset classes and across distinct samples [1]. These positive returns can be attained by going
long and short simultaneously in winner and loser stocks based on their performance in
previous months (Jegadeesh and Titman, 1993). Furthermore, numerous studies have
reported that the momentum strategy has negative exposure toward market-, size- and value-
related factors and therefore has higher unexplained returns (alphas). This enigmatic risk
and reward relationship have placed momentum strategy in unique place in asset pricing
framework. This relationship is further compounded as the recently proposed volatility/
variance scaled momentum strategies (volatility scaled strategies) have shown to have
almost twice higher Sharpe Ratios (SR onwards) and alphas in comparison to momentum
strategy (Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016).

Does the volatility scaling improve the performance of any strategy? The recent studies
such as Bongaerts et al. (2020) and Cederburg et al. (2020) indicate that such is not the case.
The success of volatility scaling for any strategy is linked with the two aspects of the
relationship between volatility and return. First that the volatility is persistent and second the
negative relationship [2] exist between volatility and returns. As both of aforesaid
characteristics exist for the momentum strategy; therefore, Cederburg et al. (2020) [3]
conclude that the scaling by volatility boost the performance of the momentum strategy.
However, it is not discussed in the literature that the persistence in volatility imposes one
implicit condition to achieve the consistent performance across different investment horizons.
The condition is that the negative relationship between momentum returns, and its previous
volatility must exist across different states of volatility.

We find that the significant negative relationship between volatility and return only exist
in the fifth quintile of the volatility of the momentum strategy. Accordingly, in the lower
quintiles, the SR of both scaled and momentum strategy are roughly the same. Interestingly,
by averaging the return and volatility across the quintiles, the superior performance of scaled
strategies against momentum strategy become obvious. This observation predisposes that
the higher performance of scaling strategies requires an equal mixing of different volatility
states in any investment horizon. For full sample this occurs naturally, but the same may not
hold for the randomly selected shorter investment horizons. Nevertheless, as the investment
horizon increases the mixing of the extreme volatility states along with other states also
increase. Therefore, the SR increases too, and this creates a link between the length of the
investment horizon and the performance of scaled strategies.

These results that hold for SR of the scaled strategies also hold for alphas. We find that as
the investment horizon increases, the alphas associated with scaled strategies also increase and
the biggest alpha is for longest investment horizon. Interestingly, we find that the volatility
of the winner (long side of the scaled strategies) of the scaled strategies is quite higher than the
volatility of the winner of momentum strategy. The same does not hold for loser portfolio. This
is despite of the fact that an overall volatility of the scaled strategies and momentum strategy is
kept same in our analysis for different investment horizons. Further, the volatility of winner
portfolio monotonically increases as investment horizon increases. Lastly, we find that the
excess returns on the scaled strategies are positively linked with the increase in the variance of
the winners’ portfolio of scaled strategies over the momentum strategy.



These results indicate that when the long and short position in the momentum strategy is Performance of

changed from one dollar to the inverse of the volatility. Then the contribution from the winner
side in the overall volatility of the scaled momentum strategy increases. How is this increased
volatility of the winner side linked with the performance? The answer is self-explanatory, we
notice that when the volatility of the momentum strategy is higher, the momentum collapses,
as the returns on the loser side predominate winner. In such times the scaled strategies reduce
the amount of investment and minimizes the contribution from the loser side. This at one
hand avoids huge loses and at other decrease the volatility related contribution from the loser
side towards total volatility of the scaled strategies in high volatile states. In low volatile
states, the volatility scaling does the opposite and increases the investment in scaled
strategies. This dump and pump of the investment brings about the key role of the winner
side for the better performance of the scaled strategies.

Our study contributes to the existing literature on the volatility scaling in two ways. First,
it points out that the performance of the scaled strategies for the US market is linked with the
length of investment horizon. This horizon bound link is underpinned by the persistence in
volatility and its negative relationship with returns that exist when volatility is higher.
Second, the higher performance of the scaled strategies can be explained by the higher
variance loaded on the long side of these strategies.

In the second section of this paper, we discuss in detail the nature of relationship between
volatility and momentum returns. The third section is reserved for discussing the
performance of scaled strategies in connection with the variance of long-leg (past winners).
In the fourth section we link the difference between the variance of long-leg of the scaled
strategies and momentum strategy with the difference in their returns at various investment
horizons. The section five concludes the paper.

2. Volatility scaled momentum returns
The data for the construction of scaled strategies and the momentum strategy is downloaded
from Kenneth French’s data library. We use both daily and monthly data form November
1926 to September 2016, the daily momentum return series is used to construct the realized
volatility of momentum strategy. In total four different volatility scaled strategies
MOMs,; = [MOMCV, MOMVS, MOMOS, MOMIS)] reported in Daniel and Moskowitz
(2016) are used. Whereas MOMCV , MOMYVS use the estimate of realized volatility and
variance of preceding 126 trading days of the momentum strategy till the last day of previous
month (6yem—1 ) [4] These volatility-based scaling factors are 1/6,pm -1, and 1/ afnm‘t_l.
For other two scaled strategies such as MOMOS, MOMIS, the estimates of the volatility
as spelled out in Daniel and Moskowitz (2016) are used. Here the scaling factors are the

optimized SR [5] such as wyom-1 = (%) % , whereas ft,,,,, ;— and 6, ,_; are the
conditional expectation of momentum returns and variance. These weights are estimated in
two different ways. First based on expanding window. Such that these weights are available
for making an investment for the coming month. Second, the weights are selected based on
whole sample. Accordingly, we have two scaled strategies one is out of sample, which is
based on expanding window MOMOS, and second is in sample strategy, which is based on

weights estimated by using full sample MOMIS.

2.1 Relationship between volatility and returns of momentum strategy in quintiles

The volatility scaling improves the performance of any strategy, provided the negative
relationship between the realized volatility and returns exist (Barroso and Santa-Clara, 2015;
Daniel and Moskowitz, 2016; Bongaerts et al, 2020) and volatility series is persistent
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(Cederburg et al, 2020). Momentum strategy fulfils both attributes. Accordingly, the volatility
scaling has shown to improve the performance of the momentum strategy. Nevertheless, in
the previous studies the consistency of the negative relationship between volatility and
return across different volatility states is not discussed. Given the persistence in the volatility
series, the inconsistent relationship between volatility and returns have some implication for
the performance of the scaled strategies such that the performance of scaled strategies will
not be consistent over different investment horizons. To check the relationship between
volatility and returns across different volatility states, we construct quintiles using volatility
of the momentum strategy for last 126 days for the sample of 1926-2016. We then test the
following model:

rie = Po+ Poi (0i-1.Qiim1) + €i @

7 is the monthly series of excess returns on winners, loser and momentum strategy and 6,
denotes the volatility [6] of momentum strategy and @)j;_; is a dummy indicating a volatility
based quintile. It takes the value of 1 for each quintile to represent a volatility state and
0 otherwise. The coefficient f; captures an impact of lagged volatility on the returns in some
volatility state. Table 1, Panel A, summarizes the finding of equation (1) when Borroso and
Santa-Clara (2015) proposed volatility is used. The relationship between returns on loser,
winner and momentum and volatility is not consistent across the volatility-based quintiles.
Specifically, the negatively significant relationship between momentum returns and
volatility only exist for fifth quintile, when the volatility is maximum. The similar
relationship exists when Daniel and Moskowitz (2016) proposed that volatility is used as per
Panel B of Table 1. The important message from these quintile-based regression is that the
volatility scaling is expected to increase the performance of the scaled strategies when the
volatility is maximum.

2.2 SR and volatility related quintiles

In this section, we present some descriptive analysis on the SR of the scaled strategies in
comparison to momentum strategy within volatility-based quintiles [7]. We analyzed in each
quintile the average returns, standard deviations and SR for different strategies. In addition
to that we have reported the number of down-market states (DMS) [8] that occurred in any
volatility-based quintile of the momentum strategy. We have further reported the average
weights [9] in quintiles with which the momentum strategy is scaled.

In Table 2, Panel A, the results for momentum strategy are shown. For the lower quintiles
the returns on the momentum strategy and SR are the highest. Especially, in the first quintile
the annual returns are 24.81% and SR is 2.02 for the momentum strategy, whereas for the
fifth quintile these returns are —0.04% and SR is almost zero. Overall, there is a negative
association between volatility-based quintiles and momentum returns and SR. It is because
the loser/winner portfolio has lower/higher returns in lowest quintile and then these returns
for both portfolios increase till fourth quintile. Nevertheless, for loser portfolio these returns
increase more in comparison to winner portfolio therefore the returns and SR on momentum
strategy decrease as volatility increases. But, in the fifth quintile the returns on the winner
portfolio suddenly drop and become slightly lower than loser portfolio. Resultantly
momentum collapses when volatility of momentum returns is the highest.

It is interesting to note that the occurrence of DMS is directly linked with the volatility of
momentum strategy. Subsequently, most of the momentum crashes that are shown in Daniel
and Moskowitz (2016) occur in DMS and are concentrated in fifth quintile of the volatility (V5)
of the momentum strategy. The probability of the occurrence of DMS in V5 is 55% [10], and it
seems that higher realized volatility of momentum strategy is an important explanation of
momentum crashes. Other explanations are fostered by Grundy and Martin (2001) and
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Daniel and Moskowitz (2016). However, as explained in Barroso and Santa-Clara (2015) that Performance of

the momentum related volatility has one advantage over other explanations of momentum
crashes. That it can be used by the investors as an ex anfe measure to ameliorate the
momentum crashes [11].

In Panels B, C, D and E of Table 2 the descriptive statistics for scaled strategies are shown
within volatility-based quintiles. As the scaling factor is the inverse of the volatility of the
momentum strategy. Therefore, the average investment shown as weights are higher in lower
volatility-based quintiles. The scaling increases the returns in lower quintiles for all scaled
strategies. However, the volatility of these returns is also higher. Therefore, the SR for these
scaled strategies do not increase in lower quintiles in comparison to momentum strategy. The
visible increase is noted for the 5th quintile for the most of the scaled momentum strategies,
whereas for one of scaled strategy (MOMOS) the significant increase is seen for 4th quintile.
This indicates that the higher SR for the scaled strategies is confined to higher volatility
states. As the volatility is persistence [12] therefore the higher volatile states are not equally
represented in any investment horizon of shorter length than full length. The persistence
implies that the higher changes in prices are followed by the higher changes and vice
versa [13].

Based on these findings we conjecture that the twice higher SR for the scaled strategies in
comparison to momentum strategy is not available for all randomly drawn investment
horizons of shorter length. As the extent of representation of the higher volatility states in any
randomly chosen investment horizon is a necessary condition for the improved performance
of the scaled strategies.

3. Performance of scaled strategies and variance of winner

In this section, we analyze the performance of the scaled strategies in comparison to the
momentum strategy. In Table 3, the descriptive statistics and alphas associated with
momentum and scaled strategies are shown. The alphas for these scaled strategies are
accessed through six different important asset pricing models such that CAPM of Sharpe
(1964), Lintner (1965) and Mossin (1966), FF-3 of Fama and French (1993), PS-4 of Pastor and
Stambaugh (2003), FF-5 of Fama and French (2015), Q-4 model of Hou et al. (2015) and lastly
SY-4 model of Lu et al. (2017).

As shown in Panel A, the average annualized return is 13.642% for the momentum
strategy (MOM). Importantly, the models such as, CAPM, FF-3, PS-4 and FF-5 are unable to
explain the excess returns on the momentum strategy. As the monthly alphas from these
models are higher than the sample average of the momentum strategy. However, the newly
proposed models of Hou ef al. (2015) and Lu ef al. (2017) are vital in explaining the momentum
returns. Such that, alphas are economically small and statistically insignificant.

A significant observation in Panel A is the difference between the variance of winner and
of loser portfolio. Despite having higher returns from winner its contribution in terms of
variance for overall momentum strategy is half of the variance of the loser. It is interesting to
see how these variances are evolved once weighting scheme for momentum returns is
replaced from one dollar to the inverse of the volatility related weights.

In Panel B, C, D and E of Table 3 the results for scaled momentum strategies are shown.
The variance for the momentum strategy and of all scaled strategies is kept equal that is
7.453. In this sense, the performance of these strategies is comparable in terms of their SR and
alphas. The scaling improves the momentum strategy in many respects. To start with the
alphas of CAPM, FF-3, PS4 and FF-5 are higher than the counterpart sample averages of
these scaled strategies. That is, there is no risk-based explanation for these scaled strategies.
The models Q-4 and SY-4 models do not explain well the returns on the scaled strategies. As
the alphas of these models are economically large and statistically reliable. Further, the
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annual SR are 0.944, 1.057, 1.027 and 1.082 for the scaled strategies and these are twice higher Performance of

than the SR of the momentum strategy. Further the skewness is now positive for most of the
scaled strategies, except for smaller negative skewness coefficient for MOMCV.

It is evident from Table 3 that the scaled momentum strategies are performing better than
momentum strategy after controlling for strategy specific risks and market-based risks.
However, one noticeable omission in the previous studies on the scaled momentum strategies
is the higher contribution from the variance of winner portfolio towards total variance of the
scaled strategies in comparison to the momentum strategy. At this stage it is a testable
proposition that if this difference of variances for the long side of these strategies is the main
contributing factor for the better performance of the scaled strategies. For that we conduct in
sample analysis for the evaluation of the winner side variance for different investment
horizons. Such as, if investor randomly chooses 5 years of the investment horizon out of total
sample, then does the variance of the winner of the scaled strategy in comparison to the
momentum strategy increase. Further, how this variance evolves when the investment
horizons are increased by 5 years each. Lastly it is interesting to see that how this differential
in variance is linked with the performance of the scaled strategies over the investment
horizons. We gauge the average performance of the scaled strategies over momentum
strategy at each investment horizon based on rolling windows [14] and this procedure is like
the sampling without replacement.

To see that we decompose the variance of the strategies into the variances of winner and
loser portfolios and covariance [15] between them. The variance of the momentum strategy
using some weighting scheme that yield zero-cost strategy is w?6%, + w’6? —w’owoLpy ;.
As for momentum strategy w = 1, the variance is 63, + 67 — oy oLy 1.

In Panel A of Table 4, the difference between the variance of winner of scaled strategies
and momentum strategy (w?c%, —o%,) is shown as WCV, WVS, WOS and WIS. These
differences are calculated based on rolling windows of 5, 10, 15, 20 years, half sample (HS) and
full sample (FS). In Panel B, C and D, the difference between the variance of loser (w?c? — 67),
correlation (w?py ;. — py ;) and covariance (w?oworpy ; — oworpy ) of winner and loser
portfolios is shown. For each rolling window the overall variance of the scaled and
momentum strategies is kept the same. Finally, in Panel E and F, the annualized difference
between returns and the SR of scaled and momentum strategies are shown.

The difference between the variance of the winner of the scaled momentum strategies and
traditional momentum is always positive and it significantly increases when the length of the
investment horizon surpasses the half sample [16] and become the maximum for the full
sample. Similarly, in Panel B of Table 4, the variance of the loser portfolio for the scaled
strategies is higher than the variance of the loser portfolio on momentum strategy, but the
extent of this increase is not comparable with the increase in the variance of winner portfolio.
Further there is no monotonic pattern in the increase in variance of the loser portfolio. Panel C
and D of Table 4 indicate that the differences in the correlations and covariance between
scaled and momentum strategies are also positive and linked with the investment horizon.
Next in Panel E, the difference in average returns for scaled and momentums strategies are
not same across different investment horizons, and they start increasing once the investment
horizon approach 20 years and beyond.

In Panel F a more direct link between the difference in SR of these strategies and the
investment horizons can be seen. Such as the length of investment horizon increases by
5 years, the difference in SR consistently increases and become the highest in the full
sample. This increase in SR is linked with the increasing variance of the winner portfolio of
the scaled strategy in comparison to momentum strategy. This emphasis the main finding
of this study that the performance of scaled strategies is a function of the investment
horizon.
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Table 4.

Difference in average
returns, SR, variances
and Co-Variances of
momentum strategies

Panel A: Difference in winners variances Panel B: Difference in losers variances

WCV WVS WOS WIS LCV LVS LOS LIS
5Y 1912 3.717 3.242 3.681 0.540 1.268 0.814 1.509
10Y 1.967 3.691 3.201 3.504 0.430 0.960 0.880 1.256
15Y 1.981 3.243 2992 3.207 0.460 0.788 1.035 1.118
20Y 2.021 3.250 3.004 3.277 0.623 1.060 1.236 1.361
HS 3.882 5.443 5.741 6.215 0.586 0.821 1274 1.345
FS 4.703 6.673 5.908 6.904 0.373 0.621 1.469 1.366
Panel C: Difference in winners and losers correlation Panel D: Difference in Co-Variances

WCV WVS WOS WIS WCV WVS WOS WIS

LCV LVS LOS LIS LCV LVS LOS LIS
5Y 0.0309 0.0558 0.0593 0.0621 2452 4985 4.056 5.190
10Y 0.0410 0.0684 0.0753 0.0778 2397 4.651 4.081 4.760
15Y 0.0471 0.0744 0.0834 0.0854 2441 4.031 4.027 4.325
20Y 0.0539 0.0815 0.0901 0.0933 2644 4.310 4.240 4.639
HS 0.0561 0.0772 0.0914 0.0965 2477 3570 4152 4.504
FS 0.0569 0.0847 0.0885 0.0973 5.076 7.294 7.377 8.270
Panel E: Difference in average returns Panel F: Difference in SR

MOMCV ~ MOMVS MOMOS MOMIS MOMCV ~ MOMVS MOMOS  MOMIS

5Y 4.817 7.653 7.099 8.006 17.70 25.80 27.10 29.70
10Y 4722 6.952 7.044 7.763 19.50 27.00 2940 31.50
15Y 5.043 6.863 7.323 7923 21.50 28.80 31.90 33.80
20Y 5.646 7.524 7.939 8.500 24.50 32.50 3540 37.30
HS 6.675 8.560 9.106 9.626 30.10 38.70 41.70 43.90
FS 12.141 15.222 14.387 15.899 44.50 55.80 52.70 58.20

Note(s): In this table, Panel A and B shows the difference of winners’/losers’ variances for scaled strategies in
comparison to momentum strategy. As there are four scaled strategies therefore there are four series of average
differences of variance over rolling windows of different years. These differences are shown as WCV, WVS,
WOS and WIS for winners and LCV, LVS, LOS and LIS for losers, respectively. The Panel C and D reports the
difference of winners'/losers’, correlations/co-variances for the scaled and traditional momentum strategy.
Panel E describes the difference between average returns of scaled momentum strategies relative to momentum
strategies. Panel F reports the difference of SR of scaled and momentum strategies. These statistics are
reported for different rolling windows i.e. 5, 10, 15, 20years, and half sample (HS). The same statistics are also
calculated for full sample (FS). The percentage differences over various rolling windows/investment horizons
are annualized

4. Performance of scaled strategies and investment horizons

To test the proposition that the performance of scaled strategies in comparison to momentum
strategy depends on the average representation of different states of volatility in any
investment horizon. We created two groups having same investment horizons, but with
different average representation of volatility. The first group is based on actual investment
horizons of 5, 10 and 15 etc. years. The basic purpose of constructing this group is to gauge
the average performance of the scaled strategies for a given investment horizon that is
selected randomly from the total sample of momentum returns of 90 years. These investment
horizons are selected based on rolling window. We call them random samples as their
selection is like random draws of some investment horizon without replacement from the total
sample. These random samples are selected for both scaled strategies and for momentum
strategy. Further the volatilities at each rolling window corresponding to some investment
horizon is equalized for the calculation of average SR. Resultantly, we have the estimates of



SR that are available to an investor on average with the investment horizons of 5,10, and 15 Performance of

etc. years in scaled strategies and momentum strategy.

The second group represents the pseudo investment horizon of same length as of random
sample. The difference is that they are created to give the volatility states an average
representation. This can be achieved by ignoring the persistence in the volatility states of
momentum strategies, we call these investment horizons the mixed sample. Obviously, these
mixed samples do not represent the actual investment horizons. Such that for the 5 years
mixed sample, we take five observations across five quintiles of volatility and repeat this
process till the time we have 60 observations. These observations do not follow any
chronological pattern. Once all 60 observations are collected, then this procedure is repeated
by leaving the first observation. The construction of the mixed samples for longer horizons
also follows the same procedure. For mixed sample as well, we keep the volatility same at
each horizon for calculating SR for scaled strategies and momentum strategy. This novelty in
approach assists us to analyze the role of persistence in volatility for the performance of the
scaled strategies.

4.1 Random sample and mixed sample

In Table 5, Panel A, the annual SRs are shown for the momentum strategy (MOM) and scaled
strategies (MOMCV, MOMVS, MOMOS, MOMIS) for different investment horizons selected
based on random sampling. It is interesting to note that as the investment horizon increases
the SR of the traditional momentum strategy decreases monotonically. This is because the
representation on average of higher volatile state increases as the length of investment
horizon increases. Therefore, the performance of the momentum strategy dampens, as the
investment horizon increases. On the other hand, the scaled strategies do better volatility
timing and invests less when the volatility is higher. Therefore, the SR remain quite
consistent for the scaled strategies as investment horizon increases.

In Panel A(a) of Table 5, the percentage increase in SR of scaled strategies over momentum
strategy is shown for different investment horizons. The results show that the proposed twice
higher SR in previous studies for scaled strategies in comparison to momentum strategy is
not available at each investment horizon. Instead, there is an intrinsic link between the
performance of scaled strategies and investment horizons. Higher performance is reserved
for those investors who hold the scaled momentum strategies for longer horizon. As for more
reasonable investment horizons (5 years—20 years) the increase in SR is within the range of
25-40% for various scaling strategies in comparison to momentum strategy.

On the other hand, in the Panel B of Table 5, the SR of the momentum strategy and scaled
strategies for the mixed sample at smaller investment horizons is mimicking the performance
of the full sample. For instance, the SR of momentum strategy (MOM) at shorter holding
periods [17] and longer holding periods are roughly equal. These results are in contrast with
SR of random sample of momentum strategy that monotonically dampens at longer
investment horizons. Even for scaled strategies (MOMCV, MOMVS, MOMOS and MOMIS)
the SR are broadly same irrespective of the length of investment horizons. Similarly, in Panel
B (b) of Table 5, the percentage increase in SR for the scaled strategies in comparison to
momentum strategy is now delinked with the investment horizons.

These analyses delineate that the higher performance of scaled strategies as suggested in
previous studies depend upon the rare equal mix of time varying volatility states. This equal
mix of different volatility states is more probable in longer samples given the higher
persistence of volatility series. This is not to overemphasize that the better performance of
scaled momentum strategies is possible under strong persistence only if, the negative
predictive relationship between volatility and momentum returns is uniform across all
different states of volatility [18].
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Table 5.
Performance
comparison of
momentum strategies
at different investment
horizons

Random sample SR
Panel A: SR comparison on different investment horizons Panel A(a): Relative increase
HP MOM MOMCV MOMVS MOMOS MOMIS MOMCV MOMVS MOMOS MOMIS

5Y 0.90 1.10 117 1.20 1.23 22.22 30.00 33.33 36.67
10Y 089 1.09 1.16 1.19 1.21 2247 30.34 3371 35.96
15Y 086 1.07 115 1.19 1.20 24.42 33.72 3837 39.53
20Y 083 1.07 114 116 119 2892 37.35 39.76 4337
25Y 083 1.10 1.19 1.21 1.23 3253 4337 4578 4819
30Y 083 111 1.20 1.23 1.25 3373 44,58 4819 50.60
HS 0.83 113 122 125 127 36.14 46.99 50.60 53.01
50Y 082 1.13 1.22 1.24 1.26 37.80 4878 51.22 53.66
60Y 078 112 121 1.23 1.25 4359 55.13 57.69 60.26
70Y 069 1.06 115 1.16 1.19 53.62 66.67 68.12 72.46
80Y 056 0.98 1.08 1.08 112 75.00 92.86 92.86 100.00
FS 0.50 094 1.06 1.03 1.08 88.00 112.00 106.00 116.00
Mixed sample SR

Panel B: SR comparison on different investment horizons Panel B(b): Relative increase

HP  MOM MOMCV MOMVS MOMOS MOMIS MOMCV MOMVS MOMOS MOMIS

5Y 0.62 0.99 111 1.07 111 59.85 79.29 7244 79.57
10Y 054 0.96 1.09 1.08 113 7752 101.91 100.70 109.54
15Y 053 0.95 1.08 1.10 115 80.40 105.35 109.38 119.10
20Y 054 0.95 1.07 111 115 7545 9811 104.47 11323
25Y 055 0.95 1.06 1.09 114 71.33 91.96 97.62 105.23
30Y 056 0.95 1.06 1.08 112 70.21 89.89 94.60 101.81
HS 0.56 0.94 1.05 1.09 113 69.44 89.11 95.59 102.48
50Y 056 0.95 1.06 1.09 112 70.64 89.89 94.83 101.49
60Y 054 0.95 1.06 1.09 113 75.76 96.04 101.71 108.94
70Y 050 0.94 1.07 1.10 115 8847 113.93 119.22 129.87
80Y 048 0.94 1.08 1.04 112 96.55 124.38 117.01 13243
FS 0.50 0.94 1.06 1.03 1.08 88.00 112.00 106.00 116.00

Note(s): This table shows the comparison of traditional and scaled momentum strategies based on average SR
calculated at different investment horizons of 5 years, 10 years, 15 years, 20 years, half sample (HS) and full
sample (FS). These investment horizons are selected based on rolling windows for random sample and for
mixed sample whereas, in mixed sample each estimated window have equal representation of different
volatility states. In Panel A and B, the annualized SR are shown for momentum strategy (MOM), constant
volatility momentum strategies (MOMCYV), variance scaled momentum strategies (MOMVS) out of sample
(MOMOS) and in sample momentum strategies (MOMIS) strategies respectively. In Panel A(a) and B(b) the
relative increase in percentages is shown for four scaled strategies over traditional momentum strategy for
random and mixed sample. The sample period is from 1929:01 to 2016:08

4.2 Time series alphas
As we have noticed that the SR of the scaled strategies constantly improve as the investment
horizon increases. In this section we analyze the risk adjusted returns/alphas of the scaled
strategies (MOMCV, MOMVS, MOMOS, MOMOS) for using six asset pricing models such as
CAPM, FF-3, PS4, FF-5,Q-4, and SY-4. In Table 6, the average alphas for the rolling windows
of 5, 10, 15, 20 years and of half sample are reported for both the random and mixed sample.
To keep analysis consistent with the previous sections, the volatility at each horizon for all
strategies is kept same.

First, we report the alphas of the 5 years of investment horizon based on random sample of
all scaled strategies in the Panel A of Table 6. These alphas across all models, CAPM, FF-3,
PS-4, FF-5, Q-4, and SY-4 are smaller in comparison to full sample alphas of these strategies
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shown in Panel B, C, D and E of Table 3. However, once we compare the alphas of full sample
with the 5 years mixed sample then the difference is quite minuscule. The same holds true for
other investment horizons for the mixed sample, however for random sample the alphas
increase over investment horizons.

The results for the alphas are in line with the prior results for the SR for the random and
mixed sample. Such that, as the investment horizons increase so as the volatility mix,
therefore the alphas for the scaled strategies are also linked with investment horizons for
random sample. On the other hand, for mixed sample the volatility is equally mixed for
shorter investment horizons. Therefore, the alphas for shorter investment horizons are like
the alphas of the full sample of the scaled strategies. The main message from these analyses is
that the overall SR and alphas are although higher for scaled strategies than momentum
strategy. But to achieve higher performance longer investment horizons are required.

5. Decomposing the increased variance of scaled momentum strategies

Results from previous sections confirm that scaled strategies compared to momentum
strategy performed better in terms of SR and risk adjusted returns (alphas). Especially in full
sample, nevertheless it also holds true, to an extent for smaller investment horizons such as 5,
10, and 15 etc. years. In this section, we provide an explanation for this increased performance
of scaled strategies. Insights from Tables 3 and 4 reveal that the increased performance of
scaled strategies across different investment horizons is mainly due to the increase in the
variance of winners’ portfolio. Further, the results of Table 4 depict no significant change in
the variance of losers’ portfolios. Therefore, we investigate the role of increased variance for
the higher returns on the scaled momentum strategies across different investment horizons.
We kept the overall variance at each investment horizon the same for both the scaled and
momentum strategies. This also indicate that once the variance is the same at each
investment horizon, the increase in returns over horizons essentially indicate the increase in
the SR [19].

For analysis, we decompose the difference in the variance of scaled and momentum
strategies into three components. These components are the increase in the variance of losers’
portfolio (AVARy, = VARg. , — VARp ;) whereas VARg; 5, is the variance of scaled loser
and VAR7y ; is the variance of loser side of momentum strategy. Here, /2 indicates the length of
the investment horizon. Similarly the increase in the variance of winners’ portfolio is calculated
as (AVARw j, = VARsw,— VAR7w ), now VARgy , is the variance of scaled winner and
VAR 7w j,is the variance of winner of momentum strategy. Lastly the increase in the correlation
of winners and losers’ portfolios is gauged as (ACORyr., = CORswr;,— CORpwy ;). Werun
the following regression for the difference in returns of the scaled and momentum strategies
across different investment horizons /:

Ary = Po+ Py AVARL, + Py AVARw s, + Py ACORyL), + € @

Whereas A7}, is the returns on scaled strategies in excess of the returns on momentum strategy
for each investment horizon /.

We report the results of equation (2) in Table 7. Consistent with our previous analysis, we
find that it is the variance of winners’ portfolio which is mainly responsible for the better
performance of scaled momentum strategies at each investment horizon. The coefficient of
winners’ portfolio is positive and statically significant, and it increases as the investment
horizon increases. As discussed before that the performance of scaled strategies over
momentum strategy gradually increases over investment horizons. We find that the increase
in variance of winners’ portfolio of the scaled strategies over investment horizons can explain
the horizon bound performance of scaled momentum strategies. On the other hand, there is no
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significant contributions from the increase in variance of losers’ portfolio and the correlation
between winners’ and losers’ portfolio. In fact, the increase in the variance of losers’ portfolio
is negatively related with the performance of scaled strategies. For brevity, we also present
the explanatory power of each component as a percentage of total excess return explained in
Table 7 for various investment horizons. We find that almost all the explanatory power of
equation (2) shown as adj R? comes from the side of winners’ variance. These results are not
confined to just single investment horizon but consistent across all investment horizons.

On the other hand, the constituent risk factors and mispricing factors of CAPM, FF-3,
PS-4, FF-5, Q-4 and SY-4 are specifically unable to explain the excess returns on the scaled
strategies over the momentum strategy. For instance, when we regress the returns Arj, of
various investment horizons on the explanatory factors of the models such as CAPM, FF-3,
PS-4, FF-5, Q-4, and SY-4. Then the alphas are economically large and statistically reliable.
Further the is negligible for all model tested for the scaled strategies. These results are
reported in Appendix as Table Al.

6. Conclusion

The performance of the volatility scaled strategies has shown to be twice higher than
momentum strategy in full sample for the US market in the previous studies. However, we
analyzed that in shorter investment horizons the performance of the scaled strategies is not
twice higher than the momentum strategy. The main reason is that the scaling
factor(volatility) is persistent and the negative relationship between volatility and returns
only exists when volatility is higher. The negative relationship is an essential condition for
the better performance of the scaled strategies. As we analyzed that the performance of the
scaled strategies depends on the extent of average representation of volatile states in any
randomly selected investment horizon.

In full sample the volatile states have equal representation, therefore the performance is
maximum for the scaled strategies in comparison to momentum strategy. However, in shorter
sample periods on average the volatile states are not represented equally due to stronger
persistence in the volatility series. This representation increases on average as the length of
investment horizon increases. Therefore, we find that the SR for scaled momentum strategies
in comparison to momentum strategy monotonically increases as length of investment
horizon increases. The same hold true for the alphas of the scaled strategies when the various
asset pricing models are used. Hence, there is momentum in the performance of the scaled
momentum strategies which is linked with the length of investment horizons. Lastly, we find
that the higher performance of these scaled strategies is linked with the excess variance
loaded on the winner portfolio of these strategies.

Notes

1. For example: Jegadeesh and Titman (1993), Rouwenhorst (1998), Moskowitz and Grinblatt (1999),
Jegadeesh and Titman (2001), Okunev and White (2003), Erb and Harvey (2006), Moskowitz ef al.
(2012), Asness et al. (2013), and Israel and Moskowitz (2013).

2. We have also tested this proposition for 14 different long and short strategies and find the same
results, these results can be reported upon request.

3. The study affirms the findings of Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016).
4. This is as per procedure suggested in Barroso and Santa-Clara (2015).

5. For the derivation of this SR, the interested readers may consider Appendix C of Daniel and
Moskowitz (2016).

6. Both version of the volatility as proposed by Borroso and Santa-Clara (2015) and Daniel and
Moskowitz (2016) are used.



7. These quintiles are marked based on previous 126 days volatility of momentum strategy.

8. A down market state is when the cumulative returns for the last 24 months is negative.

9. These weights are the inverse of unconditional/conditional volatility of last 126 days till last month.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

If the occurrence of DMS is equally likely than in any volatility state this probability should be 20%.
Further in 4th and 5th volatility-based quintiles the probability of occurrence of DMS is 87%.

Barroso and Santa-Clara (2015) showed that the risk of momentum strategy can only be explained to
an extent of 23% by the market factor and the important predictable risk of the momentum is the
strategy specific.

We find that autocorrelation coefficients are between 0.97 and 0.85 for four different types of
volatility series used in this study. Figure Al of Appendix, shows the graphs of these volatility
related series.

Engle (1982), Bollerslev (1987), Baillie (1996), Gray (1996), Andersen and Bollerslev (1997), Chou
(1988), Schwert (1989), Nelson (1991), Engle and Patton (2001), and Poon and Granger (2003).

Investment horizon is defined as the length of an investment in some specific strategy by an
investor. It indicates the end of period wealth that an investor may have. For instance, if we take
the average of monthly continuously compounded returns 7, of an investment over the 5 years.
Then the size of investment of $1 by the end of 5 years would be equal to 1 X exp®*7«)_In this
study choosing the investment horizons based on rolling windows give us an idea that how much
an investor on average may earn if she invests in scaled strategies instead of momentum
strategy.

In addition of the covariance which is predominated by the standard deviations of winner and loser,
we have also considered the correlation between the winner and loser portfolio.

To converse space, we have not shown the increase in variance of winner portfolio of scaled strategy
over momentum strategy for investment horizons beyond half-sample. In all such horizons the
variance is increasing, these results are available upon request.

There are small differences in SR of the full sample and shorter sample which can be due to
sampling issues. For five years’ horizon there are just 60 observations to proxy the average
volatility for the full sample, that is we are just taking one observation to represent a state.
Therefore, here we see for traditional strategy the SR is not that reduced to match the SR of full
sample. There is probably lesser representation of the average volatility in 5 years’ sample
especially in comparison to half sample. However, these differences do not disrupt the spirit of
overall analysis.

Alternatively, it means that the momentum crashes are equally distributed across all volatility
related states of the momentum strategy and as per Table 2 such is not the case.

It may be added that the returns on the scaled strategies as shown in Panel E of Table 4, take longer
horizons than SR to increase. It is because as the investment horizon increases the volatility
decreases more in comparison to the increase in returns.
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